Patents by Inventor Yoshihiro Kuwamura

Yoshihiro Kuwamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180355743
    Abstract: There are provided a seal fin, a seal structure, a turbo machine, and a method for manufacturing a seal fin. The seal fin suppresses leak of a fluid from a gap between a first and a second structures facing each other in a radius direction, and is formed on the first structure while keeping a clearance with respect to the second structure. The seal fin includes: a fin main body extending in the radius direction; and a protrusion being formed between a front face of the fin main body and a tip face and protruding toward an upstream side. A length of the protrusion is 1.5 times a length of the fin main body or less; an angle of the protrusion is 75 degrees or less; and a tilt angle of the fin main body is set in a range of ?60 degrees or more and 60 degrees or less.
    Type: Application
    Filed: November 29, 2016
    Publication date: December 13, 2018
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Toyoharu Nishikawa, Yoshihiro Kuwamura, Hiroharu Oyama, Katsuhisa Hamada, Hideaki Sugishita
  • Patent number: 10006292
    Abstract: A turbine includes blades and a structure rotating relative to the blades and having a fluid flowing thereto. The turbine includes step portions that are provided in either radial tip portions of the blades or areas of the structure that face the radial tip portions; sealing fins that extend from the other of the radial tip portions of the blades or areas of the structure that face the radial tip portions toward the step portions, and form minute gaps between the sealing fins and the step portions; a flow collision surface that is provided upstream of the sealing fins in a flow direction of the fluid and against which the fluid collides; a protrusion that protrudes toward an upstream side from the flow collision surface; and a facing surface that faces the flow collision surface.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: June 26, 2018
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yoshihiro Kuwamura, Kazuyuki Matsumoto, Hiroharu Oyama, Yoshinori Tanaka, Hidekazu Uehara, Yukinori Machida
  • Publication number: 20180163557
    Abstract: A sealing device for suppressing a leakage flow of a fluid via an annular gap between a stationary member and a rotary member of a rotary machine includes: a fixed fin having an annular shape and disposed in the annular gap; and a movable fin having an annular shape and being disposed adjacent to the fixed fin in an axial direction inside the annular gap. The movable fin has a greater thermal expansion coefficient than the fixed fin and is fixed to the fixed fin in a fixing region on a root-end side of the movable fin.
    Type: Application
    Filed: May 23, 2016
    Publication date: June 14, 2018
    Inventors: Yoshihiro KUWAMURA, Hiroharu OYAMA, Yoshinori TANAKA, Hideaki SUGISHITA
  • Patent number: 9896952
    Abstract: A steam turbine through which a fluid flows along an axis is equipped with: a tip shroud for turbine blades that are provided on a shaft that extends with the axis as a center; an outer partition plate ring that is provided on a casing so as to face the tip shroud in a radial direction and be capable of rotating relative to the tip shroud around the axis; seal fins that extend radially inward from the outer partition plate ring and that, with the tip shroud, form minute gaps therebetween; and steam introduction surfaces that are formed on downstream sides of the seal fins and are provided so as to face the seal fins within cavities where a main vortex, generated from a leakage flow passing through a minute gap, is generated, and that guide the flow, generated from the main vortex, toward the minute gaps.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: February 20, 2018
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Kazuyuki Matsumoto, Yoshihiro Kuwamura, Hiroharu Oyama, Yoshinori Tanaka
  • Publication number: 20180045065
    Abstract: A seal device for a turbine includes: a plurality of thin plates arranged along an outer peripheral surface of the rotor, each of the thin plates including a root portion disposed on an outer side in a radial direction of the rotor and supported on a stationary part of the turbine and a tip portion disposed on an inner side in the radial direction of the rotor and having a tip surface facing the outer peripheral surface of the rotor. Each of the thin plates is configured such that a width direction of the thin plate is parallel to an axial direction of the rotor at a side of the root portion, and the tip portion of each of the thin plates is configured such that an end on a side of the high-pressure space is positioned downstream of another end on a side of the low-pressure side.
    Type: Application
    Filed: February 9, 2016
    Publication date: February 15, 2018
    Inventors: Azumi YOSHIDA, Hidekazu UEHARA, Hiroharu OYAMA, Kohei OZAKI, Katsuhisa HAMADA, Hideaki SUGISHITA, Toyoharu NISHIKAWA, Yoshihiro KUWAMURA, Kohei HATANO, Keisuke MATSUYAMA
  • Publication number: 20180030845
    Abstract: A seal device for a turbine is disposed around a rotor so as to separate a high-pressure space and a low-pressure space and includes: a plurality of thin plates arranged along an outer peripheral surface of the rotor. Each of the thin plates has a thin-plate tip surface facing the outer peripheral surface of the rotor; a first side plate disposed so as to face the high-pressure space and covering outer peripheral regions of first side surfaces; and a second side plate disposed so as to face the low-pressure space and covering outer peripheral regions of second side surfaces. The first side surface of each of the thin plates is covered with the first side plate in a region extending further to an inner side, in a radial direction of the rotor, than a region of the second side surface covered with the second side plate.
    Type: Application
    Filed: December 22, 2015
    Publication date: February 1, 2018
    Inventors: Azumi YOSHIDA, Hidekazu UEHARA, Hiroharu OYAMA, Kohei OZAKI, Katsuhisa HAMADA, Hideaki SUGISHITA, Toyoharu NISHIKAWA, Yoshihiro KUWAMURA, Kohei HATANO, Keisuke MATSUYAMA
  • Patent number: 9879786
    Abstract: A rotary machine includes turbine moving blades (50); a casing (10) covering the turbine moving blades (50) so as to define a gap at an outer circumferential side of the turbine moving blades; a leaf seal (70) having a seal body (71) that is disposed in the gap so as to protrude radially inward from the casing (10) and is capable of coming into contact with the turbine moving blades (50), and a high-pressure-side plate member (73) that is disposed along a face facing a high pressure side of the seal body (71); and a swirling flow inhibitor (80) that is provided on the high pressure side of the leaf seal (70) in the gap and inhibits a swirl flow flowing through the gap in a circumferential direction.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: January 30, 2018
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yoshihiro Kuwamura, Koichi Ishizaka, Yoshiyuki Okabe, Kazuyuki Matsumoto, Hiroharu Oyama, Hidekazu Uehara, Yoshinori Tanaka, Shin Nishimoto
  • Publication number: 20180016928
    Abstract: A turbine is provided with a seal device. The seal device includes: at least one step surface disposed in a region of an outer peripheral surface of a rotor facing a shroud of a stationary vane in the radial direction of the rotor, the at least one step surface facing upstream in a flow direction of the fluid and dividing the region of the outer peripheral surface into at least two sections in an axial direction of the rotor: at least two seal fins protruding toward the at least two sections from the stationary vane and facing the at least two sections via a seal gap; and a swirling-component application portion disposed on an end side of the shroud of the stationary vane with respect to the axial direction of the rotor and configured to be capable of applying a swirling component to the fluid flowing toward the seal gap.
    Type: Application
    Filed: December 16, 2015
    Publication date: January 18, 2018
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yoshihiro Kuwamura, Hiroharu Oyama, Yoshinori Tanaka, Hideaki Sugishita
  • Publication number: 20170370237
    Abstract: A seal device of a turbine includes: at least one step surface disposed on a radially outer surface of a rotor blade facing a first radial-directional gap or on an outer peripheral surface of a rotor facing a second radial-directional gap, the at least one step surface facing upstream in a flow direction of a fluid and dividing the radially outer surface of the rotor blade or the outer peripheral surface of the rotor into at least two sections in an axial direction of the rotor; at least two seal fins protruding toward the at least two sections, respectively, from a surrounding member or the stationary vane, and facing the at least two sections via a seal gap, respectively, the at least two seal fins forming a cavity which extends over the at least one step surface in the axial direction of the rotor between each other.
    Type: Application
    Filed: December 16, 2015
    Publication date: December 28, 2017
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yoshihiro Kuwamura, Hiroharu Oyama, Yoshinori Tanaka, Hideaki Sugishita
  • Patent number: 9726027
    Abstract: A turbine includes: a blade body having a blade provided at one of a rotor rotatably supported and a stator provided around the rotor and extending in a radial direction and a shroud extending in a circumferential direction at a tip portion in the radial direction of the blade; and an accommodating concave body provided at another one of the rotor and the stator, extending in the circumferential direction, accommodating the shroud with a gap interposed therebetween, and relatively rotating with respect to the blade body, wherein a leakage flow leaked from a main flow flowing along the blade flows into the gap; and wherein the shroud is provided with a guide curved surface formed between a peripheral surface facing the accommodating concave body and a trailing edge end portion formed closer to a main flow side in a downstream side of the leakage flow than the peripheral surface.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: August 8, 2017
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yoshihiro Kuwamura, Kazuyuki Matsumoto, Hiroharu Oyama, Yoshinori Tanaka, Masaaki Matsuura, Asaharu Matsuo
  • Patent number: 9593587
    Abstract: Provided is a turbine in which seal fins (15) are provided to a hub shroud (41) to protrude toward a bottom surface (33a) of an annular groove (33), small gaps (H) are formed between the tip ends of the seal fins and the bottom surface of the annular groove, and assuming that the axial distance between a first seal fin (15a) disposed on the front edge side of the hub shroud among the seal fins and a front edge (41a) of the hub shroud is (L) and the axial distance between the front edge of the hub shroud and an inside surface (33b) of the annular groove is (Bu), the first seal fin is disposed to satisfy L/Bu<0.3.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: March 14, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kazuyuki Matsumoto, Yoshihiro Kuwamura, Hiroharu Oyama, Yoshinori Tanaka, Asaharu Matsuo
  • Publication number: 20170022838
    Abstract: In a seal structure that seals a gap between a first structure and a second structure which faces the first structure in a radial direction and rotates relative to the first structure, one of the first structure and the second structure has a base surface and a step surface that protrudes toward the other side from the base surface, and the other is provided with: a first fin which extends toward the step surface and forms a first gap between the step surface; a second fin that, on the downstream side of the first fin, extends toward the base surface and forms a second gap between the base surface; and a protrusion part that is disposed between the first fin and the second fin and that divides a leak flow, into a first vortex along the first fin and a second vortex along the second fin.
    Type: Application
    Filed: November 26, 2014
    Publication date: January 26, 2017
    Inventors: Yoshihiro KUWAMURA, Kazuyuki MATSUMOTO, Hiroharu OYAMA, Yoshinori TANAKA, Toyoharu NISHIKAWA, Hidekazu UEHARA, Shin NISHIMOTO
  • Publication number: 20160341058
    Abstract: A seal structure (2) for sealing a gap between a first structure body (10) and a second structure body (51). The seal structure includes: a peripheral surface formed on one of the first structure body and the second structure body; a plurality of seal fins (5) provided at intervals in the axial direction so as to form clearances (m) together with the peripheral surface and protrusions that form re-adhesion edges between pairs of axially adjacent seal fins; the re-adhesion edges being locations at which leak currents (SL) re-adhere that have passed through a clearance (mA) of an upstream seal fin; and the protrusions forming first cavities in which eddies (B1) are created that flow along the upstream seal fin toward the second structure body, and second cavities in which currents (B2) are created that cause a contraction current effect on a clearance (mB) of a downstream seal fin.
    Type: Application
    Filed: January 29, 2015
    Publication date: November 24, 2016
    Inventors: Toyoharu NISHIKAWA, Yoshihiro KUWAMURA, Hiroharu OYAMA, Yoshinori TANAKA, Shin NISHIMOTO, Kazuyuki MATSUMOTO, Hidekazu UEHARA
  • Publication number: 20160333714
    Abstract: A sealing structure that seals a clearance between an outer peripheral surface of a rotor and an inner peripheral surface of a stator. The sealing structure includes: a plurality of step portions that are provided on a first surface which is one of the outer peripheral surface of the rotor and the inner peripheral surface of the stator so as to be arranged in the axial direction, and that protrude from the first surface toward a second surface which is the other of the outer peripheral surface of the rotor and the inner peripheral surface of the stator; and a seal fin that is provided on the second surface, and that forms a small clearance between a corresponding peripheral surface of the step portions. A portion in the vicinity of a tip of the seal fin in the radial direction is inclined toward the upstream side.
    Type: Application
    Filed: February 23, 2015
    Publication date: November 17, 2016
    Inventors: Kazuyuki MATSUMOTO, Yoshihiro KUWAMURA, Hiroharu OYAMA, Yoshinori TANAKA
  • Patent number: 9429022
    Abstract: A turbine includes an annular turbine blade body disposed on a flow path, a diaphragm outer ring installed at a tip side of the annular turbine blade body via a clearance, and seal fins formed to protrude from the diaphragm outer ring and configured to form small clearances with the annular turbine blade body, wherein dead water region-filling sections are formed in cavities in which main vortexes are generated, such that a dead water region that the main vortexes cannot reach is filled.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: August 30, 2016
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Kazuyuki Matsumoto, Yoshihiro Kuwamura, Hiroharu Oyama, Yoshinori Tanaka, Yukinori Machida, Asaharu Matsuo
  • Patent number: 9410432
    Abstract: A plurality of stepped parts which have step surfaces facing an upstream side in a rotating axial direction of a structural member are provided in a tip portion of a blade, and seal fins which extend toward a circumference surface of each of the stepped parts and form small clearances between the seal fin and the circumference surface corresponding to the each of the stepped parts is provided in the structural member. Also, lengths from the small clearance to the step surface on the upstream side along the rotating axial direction of the structural member are set such that one of the stepped parts on the downstream side is smaller than the other one of the stepped parts on the upstream side.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: August 9, 2016
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Kazuyuki Matsumoto, Yoshihiro Kuwamura, Hiroharu Oyama, Yoshinori Tanaka
  • Patent number: 9388701
    Abstract: A turbine (1) of the present invention comprises that at one part of a tip part (51) of the blade (50) and an area (11a) of the structure (11) corresponding to the tip part (51) of the blade, a stepped part (52) is formed, a seal fin (15) is provided at the another part of the tip part (51) of the blade and the area (11 a) of the structure (11), a cavity (C) is formed between the tip part (51) of the blade and the area (11a) of the structure (11) and between the seal fin (15) and a partition wall (54, 15). The seal fin (15) comprises a fin main body part (16), and a space restriction part (17). Thus, the present invention provides a high performance turbine in which the leakage flow rate is reduced.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: July 12, 2016
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yoshihiro Kuwamura, Kazuyuki Matsumoto, Hiroharu Oyama, Yoshinori Tanaka, Asaharu Matsuo
  • Patent number: 9360216
    Abstract: A gas turbine includes downstream side members that face a passage and have guide faces arranged in the passage side as it goes toward the upstream side. In a cross section including an axis center of a rotor shaft extending in a flow direction of a gas main stream, extension sections of the guide faces continuing to the upstream end portion of the guide faces are arranged downstream from the cavity inner wall portion of the upstream side member facing the cavities.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: June 7, 2016
    Assignee: Mitsubishi Heavy Industries Aero Engines, Ltd.
    Inventors: Takaaki Hase, Yoshihiro Kuwamura, Osamu Morii, Tadayuki Hanada, Hirokazu Hagiwara
  • Patent number: 9353640
    Abstract: A turbine includes a blade, a structure installed at a tip section side of the blade via a gap and configured to relatively rotate with respect to the blade, a step section formed at the tip section of the blade, having at least one step surface, and protruding toward a portion opposite to the tip section of the structure, a seal fin formed at the portion opposite to the tip section of the structure, extending toward the step section, and configured to form a micro gap between the step section and the seal fin, and a cutout section formed at the step surface to be connected to an upper surface of the step section. The cutout section guides a separation vortex separated from a main stream of a fluid passing through the gap toward the seal fin on the upper surface of the step section.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: May 31, 2016
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yoshihiro Kuwamura, Kazuyuki Matsumoto, Hiroharu Oyama, Yoshinori Tanaka, Asaharu Matsuo
  • Publication number: 20150300190
    Abstract: A steam turbine through which a fluid flows along an axis is equipped with: a tip shroud for turbine blades that are provided on a shaft that extends with the axis as a center; an outer partition plate ring that is provided on a casing so as to face the tip shroud in a radial direction and be capable of rotating relative to the tip shroud around the axis; seal fins that extend radially inward from the outer partition plate ring and that, with the tip shroud, form minute gaps therebetween; and steam introduction surfaces that are formed on downstream sides of the seal fins and are provided so as to face the seal fins within cavities where a main vortex, generated from a leakage flow passing through a minute gap, is generated, and that guide the flow, generated from the main vortex, toward the minute gaps.
    Type: Application
    Filed: October 17, 2013
    Publication date: October 22, 2015
    Inventors: Kazuyuki MATSUMOTO, Yoshihiro KUWAMURA, Hiroharu OYAMA, Yoshinori TANAKA