Patents by Inventor Yoshihiro Yamashita

Yoshihiro Yamashita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10494018
    Abstract: A base current command value is calculated based on a steering torque and a vehicle speed. A desired steering angle value is a constant representing the virtual steering limit position. When a steering angle threshold is set to a value close to, and smaller than, the desired steering angle value, a first correction value is calculated so that a steering reaction force is increased rapidly when a steering angle becomes equal to or larger than the steering angle threshold. A second correction value is calculated so that the steering angle becomes equal to the desired steering angle value when the steering angle becomes equal to or larger than the steering angle threshold. The base current command value is corrected by the first correction value and the second correction value. The driver is thus restrained from turning the steering wheel to a position beyond the desired steering angle value.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: December 3, 2019
    Assignee: JTEKT CORPORATION
    Inventors: Yoshihiro Yamashita, Hidenori Itamoto
  • Publication number: 20190361041
    Abstract: An automated analyzer capable of continuously performing supply of consumables is realized while continuing measurement is performed, by a simple and small amount of mechanism. An automated analyzer includes a unit that executes processing necessary for sample analysis; a consumable supply unit that supplies consumables necessary for the sample analysis to the unit; and a control device that controls operations of the unit and the consumable supply unit, in which the consumable supply unit includes a consumable container holding portion that holds a consumable storage container in which consumables is aligned and accommodated, a preliminary storage portion that temporarily holds the consumables taken out from the consumable storage container, and a transport mechanism that transports the consumables to the unit, and in which the control device transports and stores at least a portion of the consumables taken out from the consumable storage container in the preliminary storage portion.
    Type: Application
    Filed: January 24, 2018
    Publication date: November 28, 2019
    Inventors: Shunsuke SASAKI, Takenori OKUSA, Yoshihiro YAMASHITA, Hiroki FUJITA, Kenta IMAI, Toshiharu SUZUKI
  • Publication number: 20190351419
    Abstract: The mixing of reagents with each other in the reagent storage flow paths of an automatic analyzer is suppressed before and after exchange of the reagents, which are capable of being replenished without stopping analysis. An exchangeable reagent container that accommodates a reagent is connected to a reagent storage flow path that stores a portion of the reagent. The reagent storage flow path has first and second flow paths in which the second flow path is branched from the first flow path. A reagent syringe applies a negative or a positive pressure to the first and second flow paths; and a valve controls the flow path through which the reagent is sent. As a result, the reagent supplied to a measurement portion at a predetermined timing is switched from the reagent container to the reagent storage flow path wherein the reagent can be supplied without stopping analysis.
    Type: Application
    Filed: February 15, 2018
    Publication date: November 21, 2019
    Inventors: Hiroki FUJITA, Toshiharu SUZUKI, Takenori OKUSA, Shunsuke SASAKI, Yoshihiro YAMASHITA, Kenta IMAI
  • Publication number: 20190310275
    Abstract: An automatic analyzer is equipped with a sterilization mechanism removably attached to an opening of a container that holds a reagent and having an ultraviolet light generation section that radiates ultraviolet light; a suction nozzle removably attached, together with the sterilization mechanism, to the opening of the container; an analysis section adding the reagent drawn in by suction from the container via the suction nozzle to the reagent, and executing an analysis operation; and a control section exercising variable control over an irradiation light intensity of the ultraviolet light generated by the ultraviolet light generation section.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 10, 2019
    Inventors: Takeshi ISHIDA, Sakuichiro ADACHI, Yoshihiro YAMASHITA, Shunichirou NOBUKI, Hisashi YABUTANI, Isao YAMAZAKI, Michaela WINDFUHR, Bernhard HAUPTMANN, Simon KUESTER
  • Patent number: 10422797
    Abstract: An electrochemiluminescence method of detecting an analyte in a liquid sample and a corresponding analysis system. An analyte in a liquid sample is detected by first providing a receptacle containing a fluid comprising protein coated magnetic microparticles to a stirring unit. Stirring of the fluid is necessary since the density of the microparticles is usually higher than the density of the buffer fluid. Thus the microparticles tend to deposit on the bottom of the receptacle leading to an aggregation of the microparticles because of weak interactions. To obtain representative measurements a homogeneous distribution of the microparticles in the buffer fluid is necessary to ensure a constant concentration of microparticles for each analysis cycle. It is further necessary to provide disaggregation of the microparticles, which is also realized by stirring the fluid. Stirring is conducted with a rotational frequency that is adapted to the amount of fluid to be stirred.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: September 24, 2019
    Assignees: ROCHE DIAGNOSTICS OPERATIONS, INC., HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Ralf Kraus, Oliver Larbolette, Friedrich Staebler, Yoshihiro Yamashita, Yukinori Sakashita, Shinya Matsuoka, Michihiro Saito, Taku Sakazume, Katsuaki Takahashi
  • Publication number: 20190204346
    Abstract: In order to aspire to higher sensitivity in an automatic analysis device, it is important to prevent the mixing of dust and the like in a reaction part in which a sample and a reagent react. The present invention presents an automatic analysis device that is provided with a configuration for making the pressure inside a specific block in the device such as a reaction part, or inside the device become positive. By making the pressure become positive and forming an air flow that flows out from the inside of the reaction part or the device, it is possible to limit, to a certain amount or less, the amount of dust penetrating into the reaction part.
    Type: Application
    Filed: August 4, 2017
    Publication date: July 4, 2019
    Inventors: Daisuke EBIHARA, Kenta IMAI, Yoshihiro YAMASHITA, Shigeki MATSUBARA, Taku SAKAZUME
  • Patent number: 10307782
    Abstract: The nozzle cleaning method includes the following steps: a first cleaning step in which a pre-pressurization liquid is discharged from a dispensing nozzle in a first cleaning position so as to clean the inside wall thereof and a first cleaning liquid is applied to the outside wall of the dispensing nozzle so as to clean said outside wall; a second cleaning step in which a second cleaning liquid is suctioned into the dispensing nozzle in a second cleaning position so as to clean the inside wall thereof; and a third cleaning step in which the second cleaning liquid is discharged from the dispensing nozzle in a third cleaning position so as to clean the inside wall thereof and a third cleaning liquid is applied to the outside wall of the dispensing nozzle so as to clean said outside wall.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: June 4, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takushi Miyakawa, Yukinori Sakashita, Yoshihiro Yamashita, Katsuhiro Kambara
  • Patent number: 10099722
    Abstract: A steering control apparatus is provided which suppresses possible vibration of a steering system resulting from differential steering processing when a steering angle or a steered angle has a large value. A differential steering processing circuit calculates a differential steering correction amount based on a difference value of a target steering angle, and increases or reduces the target steering angle using the calculated amount to obtain a target steered angle. A limiting reaction force setting processing circuit increases a limiting reaction force when a maximum value of the target steering angle and the target steered angle is equal to or larger than a common threshold. When the maximum value approaches the common threshold, an angle-sensitive gain setting processing circuit reduces an angle-sensitive gain so as to correct and reduce the differential steering correction amount.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: October 16, 2018
    Assignee: JTEKT CORPORATION
    Inventors: Takashi Kodera, Naoki Yamano, Hidenori Itamoto, Yoshihiro Yamashita, Koji Anraku
  • Publication number: 20180203029
    Abstract: An amount of gas remaining within a fluid control valve is reduced according to a method for fixing the fluid control valve to achieve highly accurate trace dispensation by simply removing gas. The dispensing device has a discharge nozzle, a liquid feeding tube that is disposed so as to connect a reagent bottle in which a reagent is stored and the discharge nozzle and forms a reagent flow path, and a fluid control valve that is disposed on the liquid feeding tube route connecting the reagent bottle and the discharge nozzle. The fluid control valve is provided with a reagent flow path having a liquid inlet and a liquid outlet and a diaphragm valve provided in the middle of the flow path. The fluid control valve is disposed in an orientation such that the diaphragm valve is disposed at the bottom of the flow path of the fluid control valve.
    Type: Application
    Filed: July 11, 2016
    Publication date: July 19, 2018
    Inventors: Koshin HAMASAKI, Yoshihiro YAMASHITA
  • Patent number: 9988076
    Abstract: A steering control apparatus includes a steering angle feedback processing unit and an operation signal generation processing unit that operate a reaction force actuator to adjust a steering angle to a target steering angle that is a target value for the steering angle based on feedback control, an ideal-axial-force calculation unit that calculates an ideal axial force, a road-surface-axial-force calculation unit that calculates a road surface axial force, an axial-force allocation calculation unit that calculates a base reaction force in which the ideal axial force and the road surface axial force are allocated in a predetermined ratio, and a target steering angle calculation processing unit that sets a target steering angle based on the base reaction force. The steering angle feedback processing unit feeds back the target steering angle in which road surface information is incorporated through the road surface axial force, so that the steering angle is controlled.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: June 5, 2018
    Assignee: JTEKT CORPORATION
    Inventors: Takashi Kodera, Naoki Yamano, Hidenori Itamoto, Yoshihiro Yamashita, Koji Anraku
  • Patent number: 9988075
    Abstract: An update amount calculation processing circuit manipulates a control angle based on an update amount in order to perform feedback-control for causing a steering torque to be adjusted to a target torque. In this case, the update amount calculation processing circuit executes a guard process on the update amount with reference to an estimated amount of change that is a speed equivalent value based on estimation by an induced voltage observer. However, when a command current set by a command current setting processing circuit is zero, the update amount calculation processing circuit determines the estimated amount of change subjected to the guard process to be the update amount. When the command current is zero and the update amount is fixed to a guard value, an electric path between the synchronous motor and a battery is blocked.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: June 5, 2018
    Assignee: JTEKT CORPORATION
    Inventors: Naoki Yamano, Hidenori Itamoto, Takashi Kodera, Yoshihiro Yamashita, Koji Anraku
  • Patent number: 9977041
    Abstract: It is determined whether an automatic analysis device is in a state where it is necessary to perform periodic cleaning or periodic replacement on a B/F separation passage of a reaction liquid suction nozzle 120 for B/F separation or the like and a detection passage of a reaction liquid suction nozzle 123 for detection, a detection unit 124, and the like, based on the properties of a specimen, a reagent, and a reaction liquid which is obtained by reacting the specimen and the reagent, an analysis protocol which defines treatment conditions of these solutions, and the number of times of dispensing, feeding, and measuring the solutions; and the determined result is displayed on a display 130 as a signal. Accordingly, the automatic analysis device is provided so as to be able to perform adequate maintenance in accordance with analysis conditions.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: May 22, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yoshihiro Yamashita, Takaaki Hagiwara, Toshiharu Suzuki
  • Patent number: 9958468
    Abstract: The present invention provides an automatic analyzer capable of reducing the time necessary for analysis processing by making various operations pertaining to the analysis processing more efficient. More specifically, the present invention is characterized in that, from among a plurality of ending operation items set as analysis ending operations to perform at the end of analysis operations for analyzing a sample under analysis, one or more ending operation items to be performed are selected, and on the basis of monitoring results of monitoring the status of an automatic analyzer during the period from the end of the analysis ending operations to the start of analysis preparation operations for preparing for the analysis operations, one or more preparation operation items to be performed are selected from among a plurality of preparation operation items set as analysis preparation operations.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: May 1, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yoshihiro Yamashita, Toshiharu Suzuki, Takaaki Hagiwara, Kazunori Yamazawa
  • Publication number: 20180079447
    Abstract: A base current command value is calculated based on a steering torque and a vehicle speed. A desired steering angle value is a constant representing the virtual steering limit position. When a steering angle threshold is set to a value close to, and smaller than, the desired steering angle value, a first correction value is calculated so that a steering reaction force is increased rapidly when a steering angle becomes equal to or larger than the steering angle threshold. A second correction value is calculated so that the steering angle becomes equal to the desired steering angle value when the steering angle becomes equal to or larger than the steering angle threshold. The base current command value is corrected by the first correction value and the second correction value. The driver is thus restrained from turning the steering wheel to a position beyond the desired steering angle value.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 22, 2018
    Applicant: JTEKT CORPORATION
    Inventors: Yoshihiro YAMASHITA, Hidenori ITAMOTO
  • Publication number: 20180011121
    Abstract: Provided are an automated analyzer for analyzing a substance contained in an unknown sample and a liquid reservoir, the analyzer and the reservoir being capable of saving users' operation without remarkably increasing the number of components. A flow path outlet of an overflow portion of the liquid reservoirs projects closer to the inner circumferential side of a drain flow path than to an inner circumferential surface side of an outer wall of the drain flow path serving as a destination to which liquid overflows. In addition, the flow path outlet projects so as to come into contact with an outer wall of the inner pipe. The flow path outlet of the overflow portion projects into the drain flow path so as to be located below an upper end of the outer wall of the drain flow path.
    Type: Application
    Filed: January 7, 2016
    Publication date: January 11, 2018
    Inventors: Reika KURODA, Kenta IMAI, Yukinori SAKASHITA, Yoshihiro YAMASHITA
  • Patent number: 9791465
    Abstract: The automatic analyzer includes a suction nozzle; a liquid transfer syringe; a suction channel which connects the suction nozzle and the liquid transfer syringe; a flow cell which is arranged in the middle of the suction channel; a detector for sample analysis which is arranged in the flow cell; a reaction auxiliary liquid vessel and a cleaning liquid vessel which store liquids to be sucked in by the suction nozzle; means for supplying a diluting fluid to the vessels; a cleaning tank for dumping liquid remaining in the vessels; and a controller for supplying the diluting fluid to the vessels when the remaining liquid is discharged from the vessels and thereafter having the diluted remaining liquid sucked into the flow cell via the suction nozzle and having the sucked remaining liquid discharged to the cleaning tank.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: October 17, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yukinori Sakashita, Katsuhiro Kambara, Yoshihiro Yamashita
  • Publication number: 20170267276
    Abstract: A steering control apparatus includes a steering angle feedback processing unit and an operation signal generation processing unit that operate a reaction force actuator to adjust a steering angle to a target steering angle that is a target value for the steering angle based on feedback control, an ideal-axial-force calculation unit that calculates an ideal axial force, a road-surface-axial-force calculation unit that calculates a road surface axial force, an axial-force allocation calculation unit that calculates a base reaction force in which the ideal axial force and the road surface axial force are allocated in a predetermined ratio, and a target steering angle calculation processing unit that sets a target steering angle based on the base reaction force. The steering angle feedback processing unit feeds back the target steering angle in which road surface information is incorporated through the road surface axial force, so that the steering angle is controlled.
    Type: Application
    Filed: March 9, 2017
    Publication date: September 21, 2017
    Applicant: JTEKT CORPORATION
    Inventors: Takashi KODERA, Naoki YAMANO, Hidenori ITAMOTO, Yoshihiro YAMASHITA, Koji ANRAKU
  • Publication number: 20170205321
    Abstract: In a liquid stirring method, after a second liquid is discharged into a reaction container accommodating a first liquid from a dispensing probe provided with a dispensing tip at the leading end thereof, a mixture of the first liquid and second liquid in the container is stirred by being sucked out and discharged by the dispensing probe. The number of stirrings through sucking out and discharging is changed according to the total volume of the first liquid and second liquid. If the total volume of the first liquid and second liquid is below a preset threshold, sucking out and discharging is repeated for a prescribed number of times.
    Type: Application
    Filed: June 15, 2015
    Publication date: July 20, 2017
    Inventors: Shunsuke SASAKI, Yoshihiro YAMASHITA
  • Publication number: 20170113720
    Abstract: A steering control apparatus is provided which suppresses possible vibration of a steering system resulting from differential steering processing when a steering angle or a steered angle has a large value. A differential steering processing circuit calculates a differential steering correction amount based on a difference value of a target steering angle, and increases or reduces the target steering angle using the calculated amount to obtain a target steered angle. A limiting reaction force setting processing circuit increases a limiting reaction force when a maximum value of the target steering angle and the target steered angle is equal to or larger than a common threshold. When the maximum value approaches the common threshold, an angle-sensitive gain setting processing circuit reduces an angle-sensitive gain so as to correct and reduce the differential steering correction amount.
    Type: Application
    Filed: October 13, 2016
    Publication date: April 27, 2017
    Applicant: JTEKT CORPORATION
    Inventors: Takashi KODERA, Naoki YAMANO, Hidenori ITAMOTO, Yoshihiro YAMASHITA, Koji ANRAKU
  • Publication number: 20170113715
    Abstract: An update amount calculation processing circuit manipulates a control angle based on an update amount in order to perform feedback-control for causing a steering torque to be adjusted to a target torque. In this case, the update amount calculation processing circuit executes a guard process on the update amount with reference to an estimated amount of change that is a speed equivalent value based on estimation by an induced voltage observer. However, when a command current set by a command current setting processing circuit is zero, the update amount calculation processing circuit determines the estimated amount of change subjected to the guard process to be the update amount. When the command current is zero and the update amount is fixed to a guard value, an electric path between the synchronous motor and a battery is blocked.
    Type: Application
    Filed: October 13, 2016
    Publication date: April 27, 2017
    Applicant: JTEKT CORPORATION
    Inventors: Naoki YAMANO, Hidenori ITAMOTO, Takashi KODERA, Yoshihiro YAMASHITA, Koji ANRAKU