Patents by Inventor Yoshikazu Nara

Yoshikazu Nara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10720418
    Abstract: A resistance circuit is configured such that a P-type resistance section and an N-type resistance section are electrically connected in series, the P-type resistance section is configured with P-type diffusion layer resistance elements that are disposed to form a right angle with respect to each other and that are electrically connected in series, and the N-type resistance section is configured with N-type diffusion layer resistance elements that are disposed to form the right angle with respect to each other and that are electrically connected in series. Furthermore, the P-type diffusion layer resistance element is disposed along a <100> orientation direction of a semiconductor substrate, and the N-type diffusion layer resistance element is disposed along a <110> orientation direction of the semiconductor substrate. It is thereby possible to provide the resistance circuit, an oscillation circuit, and an in-vehicle sensor apparatus that reduce stress-induced characteristic fluctuations.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: July 21, 2020
    Assignee: HITACHI AUTOMOTIVE SYSTEMS LTD.
    Inventors: Yoshimitsu Yanagawa, Yoshikazu Nara, Masahiro Matsumoto, Hiroshi Nakano, Akira Kotabe
  • Publication number: 20200013769
    Abstract: A resistance circuit is configured such that a P-type resistance section and an N-type resistance section are electrically connected in series, the P-type resistance section is configured with P-type diffusion layer resistance elements that are disposed to form a right angle with respect to each other and that are electrically connected in series, and the N-type resistance section is configured with N-type diffusion layer resistance elements that are disposed to form the right angle with respect to each other and that are electrically connected in series. Furthermore, the P-type diffusion layer resistance element is disposed along a <100> orientation direction of a semiconductor substrate, and the N-type diffusion layer resistance element is disposed along a <110> orientation direction of the semiconductor substrate. It is thereby possible to provide the resistance circuit, an oscillation circuit, and an in-vehicle sensor apparatus that reduce stress-induced characteristic fluctuations.
    Type: Application
    Filed: September 12, 2017
    Publication date: January 9, 2020
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Yoshimitsu YANAGAWA, Yoshikazu NARA, Masahiro MATSUMOTO, Hiroshi NAKANO, Akira KOTABE
  • Patent number: 8375239
    Abstract: Provided are a technique for high-speed switching between clock signals different in frequency, and a clock-control-signal-generation circuit which serves to generate a control signal for clock switching in a clock selector operable to switch between clock signals including a first clock signal based on first and second clock-stop-permission signals and a clock-resume-permission signal. The clock-control-signal-generation circuit includes: a before-switching clock processing unit; and an after-switching clock processing unit. In each of the before-and after-switching clock processing units, the high-frequency clock processing subunit and the low-frequency clock processing subunit take partial charges of processing of clock signals involved in the switching respectively, whereby the processing is speeded up.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: February 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshikazu Nara, Yasuhiko Takahashi
  • Patent number: 8238864
    Abstract: The present invention aims to efficiently calibrate the characteristics of a pair of reception or transmission low-pass filters by a receiving or transmitting circuit. A semiconductor integrated circuit includes an RF receiver that processes an RF reception signal, an RF transmitter that generates an RF transmission signal and a frequency synthesizer. A reception low-pass filter of the RF receiver suppresses undesired components contained in I and Q baseband reception signals. A transmission low-pass filter of the RF transmitter suppresses noise due to D/A conversion, which is contained in I and Q transmission analog baseband signals. A calibration test signal is supplied to the inputs of the pair of reception or transmission low-pass filters. A difference in phase between the pair of filters is detected by a phase detection unit. A calibration controller calibrates a relative mismatch between the cut-off frequencies of the pair of filters.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: August 7, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Manabu Kawabe, Satoshi Tanaka, Yoshikazu Nara
  • Publication number: 20110275340
    Abstract: The present invention aims to efficiently calibrate the characteristics of a pair of reception or transmission low-pass filters by a receiving or transmitting circuit. A semiconductor integrated circuit includes an RF receiver that processes an RF reception signal, an RF transmitter that generates an RF transmission signal and a frequency synthesizer. A reception low-pass filter of the RF receiver suppresses undesired components contained in I and Q baseband reception signals. A transmission low-pass filter of the RF transmitter suppresses noise due to D/A conversion, which is contained in I and Q transmission analog baseband signals. A calibration test signal is supplied to the inputs of the pair of reception or transmission low-pass filters. A difference in phase between the pair of filters is detected by a phase detection unit. A calibration controller calibrates a relative mismatch between the cut-off frequencies of the pair of filters.
    Type: Application
    Filed: July 22, 2011
    Publication date: November 10, 2011
    Inventors: Manabu KAWABE, Satoshi Tanaka, Yoshikazu Nara
  • Publication number: 20110214003
    Abstract: Provided are a technique for high-speed switching between clock signals different in frequency, and a clock-control-signal-generation circuit which serves to generate a control signal for clock switching in a clock selector operable to switch between clock signals including a first clock signal based on first and second clock-stop-permission signals and a clock-resume-permission signal. The clock-control-signal-generation circuit includes: a before-switching clock processing unit; and an after-switching clock processing unit. In each of the before- and after-switching clock processing units, the high-frequency clock processing subunit and the low-frequency clock processing subunit take partial charges of processing of clock signals involved in the switching respectively, whereby the processing is speeded up.
    Type: Application
    Filed: February 25, 2011
    Publication date: September 1, 2011
    Inventors: Yoshikazu NARA, Yasuhiko Takahashi
  • Patent number: 7995982
    Abstract: The present invention aims to efficiently calibrate the characteristics of a pair of reception or transmission low-pass filters by a receiving or transmitting circuit. A semiconductor integrated circuit includes an RF receiver that processes an RF reception signal, an RF transmitter that generates an RF transmission signal and a frequency synthesizer. A reception low-pass filter of the RF receiver suppresses undesired components contained in I and Q baseband reception signals. A transmission low-pass filter of the RF transmitter suppresses noise due to D/A conversion, which is contained in I and Q transmission analog baseband signals. A calibration test signal is supplied to the inputs of the pair of reception or transmission low-pass filters. A difference in phase between the pair of filters is detected by a phase detection unit. A calibration controller calibrates a relative mismatch between the cut-off frequencies of the pair of filters.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: August 9, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Manabu Kawabe, Satoshi Tanaka, Yoshikazu Nara
  • Publication number: 20090054007
    Abstract: The present invention aims to efficiently calibrate the characteristics of a pair of reception or transmission low-pass filters by a receiving or transmitting circuit. A semiconductor integrated circuit includes an RF receiver that processes an RF reception signal, an RF transmitter that generates an RF transmission signal and a frequency synthesizer. A reception low-pass filter of the RF receiver suppresses undesired components contained in I and Q baseband reception signals. A transmission low-pass filter of the RF transmitter suppresses noise due to D/A conversion, which is contained in I and Q transmission analog baseband signals. A calibration test signal is supplied to the inputs of the pair of reception or transmission low-pass filters. A difference in phase between the pair of filters is detected by a phase detection unit. A calibration controller calibrates a relative mismatch between the cut-off frequencies of the pair of filters.
    Type: Application
    Filed: August 15, 2008
    Publication date: February 26, 2009
    Inventors: MANABU KAWABE, SATOSHI TANAKA, YOSHIKAZU NARA
  • Patent number: 6064252
    Abstract: A clock supply apparatus includes a low-rate source clock generating unit for generating a low-rate source clock signal, a frequency multiplication/division unit for performing frequency multiplication/division processing for the low-rate source clock signal to generate a high-rate clock signal to be utilized in signal processing only during a period in which a sleep signal remains nonactive, a sleep time measuring unit for measuring a sleep time duration from the moment the sleep signal becomes active and issuing a sleep end signal upon measurement of a predetermined time period, and a sleep control unit for controlling whether the signal processing block is placed in a sleep or non-sleep mode. The sleep control unit decides the end of the sleep period upon detection of the sleep end signal.
    Type: Grant
    Filed: April 15, 1998
    Date of Patent: May 16, 2000
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Yoshikazu Nara
  • Patent number: 6009544
    Abstract: A deinterleaver includes a first storage unit for storing data an order of which is rearranged from a correct order to a random order, a data latching unit for temporarily holding output data of the first storage unit, a second storage unit for storing output data of the data latching unit, and an addressing unit for generating a read addressing signal which is outputted to the first storage unit, and a write addressing signal which id outputted to the second storage unit. The addressing unit includes a counting unit for counting a clock to generate the read addressing signal, and an arithmetic unit for generating the write addressing signal for rearranging to the correct order using the read addressing signal outputted from the counting unit.
    Type: Grant
    Filed: April 16, 1998
    Date of Patent: December 28, 1999
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Yoshikazu Nara
  • Patent number: 5978414
    Abstract: A method and system is disclosed for determining an actual transmission rate of an encoded communication which has been transmitted at one of a plurality of transmission rates. An encoded communication is decoded at the plurality of transmission rates to generate decoded signals and decoding parameters which indicate the reliability of the decoded signals. One or more candidate transmission rates are identified based upon said decoding reliability parameters. If there is only one candidate transmission rate, the actual transmission rate is determined to be that candidate transmission rate. If there is more than one candidate transmission rate, the decoded signals are reencoded at the candidate transmission rates at which they were decoded. The bits of the communication are then compared with the bits of the reencoded signals for each candidate transmission rate to determine the actual transmission rate.
    Type: Grant
    Filed: July 3, 1996
    Date of Patent: November 2, 1999
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Yoshikazu Nara
  • Patent number: 5936998
    Abstract: A system and method is disclosed for producing a band-limited modulated information signal. A modulating signal generator is disclosed which provides a band-limited modulating signal having a predetermined bandwidth and cutoff characteristic. A modulator system and method is disclosed for producing a band-limited modulated information signal by combining an information signal with the band-limited modulating signal. A modulating signal generator and method is disclosed which generates a band-limited modulating signal as a series of modulating signal values at periodic intervals. A further modulating signal generator is disclosed which provides a band-limited modulating signal by generating frequencies and combining them at appropriate amplitudes and phases to synthesize a band-limited modulating signal.
    Type: Grant
    Filed: May 16, 1996
    Date of Patent: August 10, 1999
    Inventor: Yoshikazu Nara
  • Patent number: 5214373
    Abstract: A zero phase voltage measuring device for measuring a zero phase voltage of the three phase power system having an earth-fault includes an optic voltage sensor provided at any one of three power lines for detecting a current ground-to-line voltage thereat, a line-to-line voltage sensor provided between any two of the three power lines for detecting a current line-to-line voltage therebetween. A phase shifter and a multiplier are provided for calculating an ideal ground-to-line voltage at the power lines when no earth-fault is observed by changing the phase and multiplying the magnitude of the current line-to-line voltage. A subtracter is further provided to obtain a zero phase voltage signal by subtracting the ideal ground-to-line voltage from the current ground-to-line voltage.
    Type: Grant
    Filed: June 2, 1992
    Date of Patent: May 25, 1993
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshikazu Nara, Koji Kasai