Patents by Inventor Yoshiki Nishibayashi

Yoshiki Nishibayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10822693
    Abstract: A method of manufacturing a diamond substrate includes: forming an ion implantation layer at a side of a main surface of a diamond seed substrate by implanting ions into the main surface of the diamond seed substrate; producing a diamond structure by growing a diamond growth layer by a vapor phase synthesis method on the main surface of the diamond seed substrate, after implanting the ions; and performing heat treatment on the diamond structure. The performed heat treatment causes the diamond structure to be separated along the ion implantation layer into a first structure including the diamond seed substrate and failing to include the diamond growth layer, and a diamond substrate including the diamond growth layer. Thus, the method of manufacturing a diamond substrate is provided that enables a diamond substrate with a large area to be manufactured in a short time and at a low cost.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: November 3, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takuji Okahisa, Yoshiyuki Yamamoto, Yoshiki Nishibayashi, Natsuo Tatsumi
  • Patent number: 10774442
    Abstract: In a single-crystal diamond material, a concentration of non-substitutional nitrogen atoms is not more than 200 ppm, a concentration of substitutional nitrogen atoms is lower than the concentration of the non-substitutional nitrogen atoms, and the single-crystal diamond material has a crystal growth main surface having an off angle of not more than 20°. A perforated tool includes a single-crystal diamond die, wherein in the single-crystal diamond die, a concentration of non-substitutional nitrogen atoms is not more than 200 ppm, a concentration of substitutional nitrogen atoms is lower than the concentration of the non-substitutional nitrogen atoms, and the single-crystal diamond die has a low-index plane represented by a Miller index of not less than ?5 and not more than 5 in an integer, a perpendicular line of the low-index plane having an off angle of not more than 20° relative to an orientation of a hole for wire drawing.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: September 15, 2020
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Hardmetal Corp.
    Inventors: Yoshiki Nishibayashi, Natsuo Tatsumi, Hitoshi Sumiya, Akihiko Ueda, Yutaka Kobayashi
  • Patent number: 10737943
    Abstract: Provided is a method for manufacturing a single-crystal diamond, the method including the steps of: forming a protective film on at least a part of a surface of an auxiliary plate; preparing a diamond seed crystal substrate; disposing an auxiliary plate with a protective film that has the protective film formed on the auxiliary plate, and a diamond seed crystal substrate in a chamber; and growing a single-crystal diamond on a principal surface of the diamond seed crystal substrate by a chemical vapor deposition method while introducing a carbon-containing gas into the chamber.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: August 11, 2020
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Hardmetal Corp.
    Inventors: Takuya Nohara, Natsuo Tatsumi, Yoshiki Nishibayashi, Hitoshi Sumiya, Yutaka Kobayashi, Akihiko Ueda
  • Publication number: 20200216974
    Abstract: A single-crystal diamond includes n types of regions different in total concentration of an impurity, the n types of regions being observed in an observed surface being in parallel to a (110) face. Each of the n types of regions has an area not smaller than 0.1 ?m2. At least one of a first line, a second line, and a third line on the observed surface crosses a boundary between the n types of regions at least four times. The first line, the second line, and the third line are in parallel to a <?110> direction and have a length of 1 mm. A midpoint of the first line corresponds to the center of gravity of the observed surface. The second line and the third line are distant from the first line by 300 ?m in a <001> direction and a <00?1> direction, respectively.
    Type: Application
    Filed: September 14, 2018
    Publication date: July 9, 2020
    Applicants: Sumitomo Electric Industries, Ltd., SUMITOMO ELECTRIC HARDMETAL CORP.
    Inventors: Natsuo TATSUMI, Yoshiki NISHIBAYASHI, Takuya NOHARA, Akihiko UEDA, Yutaka KOBAYASHI
  • Patent number: 10697088
    Abstract: A single-crystal diamond material has a transmittance of light with a wavelength of greater than or equal to 410 nm and less than or equal to 750 nm of less than or equal to 15% for any wavelength, and is at least either of an electrical insulator according to optical evaluation and an electrical insulator according to electrical evaluation. A criterion of the optical evaluation can be a transmittance of light with a wavelength of 10.6 ?m of greater than or equal to 1%. A criterion of the electrical evaluation can be an average resistivity of greater than or equal to 1×106 ?cm. Accordingly, a single-crystal diamond material having a low transmittance of light in the entire region of the visible light region and exhibiting a black color is provided.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: June 30, 2020
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Hardmetal Corp.
    Inventors: Yoshiki Nishibayashi, Akihiko Ueda, Yutaka Kobayashi
  • Patent number: 10697058
    Abstract: In an X-ray topography image for a crystal growth main surface of a single-crystal diamond, a group of crystal defect points are gathered, each of the crystal defect points being a tip point of a crystal defect line reaching the crystal growth main surface, the crystal defect line representing a line in which a crystal defect exists. Further, in the single-crystal diamond, a plurality of crystal defect line-like gathered regions exist in parallel. In the plurality of crystal defect line-like gathered regions, groups of crystal defect points are gathered to extend in the form of lines in a direction angled by not more than 30° relative to one arbitrarily specified direction. Accordingly, a single-crystal diamond is provided which is used suitably for a cutting tool, a polishing tool, an optical component, an electronic component, a semiconductor material, and the like.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: June 30, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Natsuo Tatsumi, Yoshiki Nishibayashi, Hitoshi Sumiya
  • Publication number: 20200181800
    Abstract: A method of manufacturing a diamond by a vapor phase synthesis method includes: preparing a substrate including a diamond seed crystal; forming a light absorbing layer lower in optical transparency than the substrate by performing ion implantation into the substrate, the light absorbing layer being formed at a predetermined depth from a main surface of the substrate; growing a diamond layer on the main surface of the substrate by the vapor phase synthesis method; and separating the diamond layer from the substrate by applying light from a main surface of at least one of the diamond layer and the substrate to allow the light absorbing layer to absorb the light and cause the light absorbing layer to be broken up.
    Type: Application
    Filed: January 29, 2020
    Publication date: June 11, 2020
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshiki Nishibayashi, Natsuo Tatsumi, Hitoshi Sumiya, Kazuo Nakamae
  • Patent number: 10639725
    Abstract: A composite diamond body includes a diamond base material and a stable layer disposed on the diamond base material. The stable layer may have a thickness of 0.001 ?m or more and less than 10 ?m, and may include a plurality of layers. A composite diamond tool includes the composite diamond body. There are thus provided highly wear-resistant composite diamond body and composite diamond tool that are even applicable to mirror-finish planarization of a workpiece which reacts with diamond to cause the diamond to wear.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: May 5, 2020
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Hardmetal Corp.
    Inventors: Yoshiki Nishibayashi, Akihiko Ueda, Yutaka Kobayashi
  • Patent number: 10584428
    Abstract: A method of manufacturing a diamond by a vapor phase synthesis method includes: preparing a substrate including a diamond seed crystal; forming a light absorbing layer lower in optical transparency than the substrate by performing ion implantation into the substrate, the light absorbing layer being formed at a predetermined depth from a main surface of the substrate; growing a diamond layer on the main surface of the substrate by the vapor phase synthesis method; and separating the diamond layer from the substrate by applying light from a main surface of at least one of the diamond layer and the substrate to allow the light absorbing layer to absorb the light and cause the light absorbing layer to be broken up.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: March 10, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshiki Nishibayashi, Natsuo Tatsumi, Hitoshi Sumiya, Kazuo Nakamae
  • Patent number: 10569317
    Abstract: A single-crystal diamond includes a pair of main surfaces facing each other, an impurity concentration being changed along a first direction in each of the main surfaces.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: February 25, 2020
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Hardmetal Corp.
    Inventors: Yoshiki Nishibayashi, Natsuo Tatsumi, Takuya Nohara, Yutaka Kobayashi, Akihiko Ueda
  • Publication number: 20200057117
    Abstract: A diamond magnetic sensor including diamond containing at least one NV? center, a microwave generator which emits microwaves to the diamond, an excitation light generator which emits excitation light to the NV? center of the diamond, and a fluorescence sensor which receives fluorescence produced from the NV? center of the diamond includes a pattern measurement apparatus which measures a temporal change pattern of magnetic field intensity based on variation in fluorescence intensity sensed by the fluorescence sensor.
    Type: Application
    Filed: February 21, 2018
    Publication date: February 20, 2020
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshiki NISHIBAYASHI, Kazuhiro IKEDA
  • Publication number: 20200040446
    Abstract: A method of manufacturing a diamond substrate includes: forming an ion implantation layer at a side of a main surface of a diamond seed substrate by implanting ions into the main surface of the diamond seed substrate; producing a diamond structure by growing a diamond growth layer by a vapor phase synthesis method on the main surface of the diamond seed substrate, after implanting the ions; and performing heat treatment on the diamond structure. The performed heat treatment causes the diamond structure to be separated along the ion implantation layer into a first structure including the diamond seed substrate and failing to include the diamond growth layer, and a diamond substrate including the diamond growth layer. Thus, the method of manufacturing a diamond substrate is provided that enables a diamond substrate with a large area to be manufactured in a short time and at a low cost.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 6, 2020
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takuji Okahisa, Yoshiyuki Yamamoto, Yoshiki Nishibayashi, Natsuo Tatsumi
  • Publication number: 20190359487
    Abstract: A carbon material has at least either a peak related to diamond bonds, or a peak related to diamond-like bonds, appearing in a range of 1250 to 1400 cm?1 in a spectrum measured by Raman scattering spectrometry, and a full width at half maximum of a maximum peak, or each of full widths at half maximum of the maximum peak and a second largest peak, among peaks appearing in the range of 1250 to 1400 cm?1, has a signal less than 100 cm?1.
    Type: Application
    Filed: November 21, 2017
    Publication date: November 28, 2019
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., KYOTO UNIVERSITY
    Inventors: Tomoyuki AWAZU, Masatoshi MAJIMA, Yoshiki NISHIBAYASHI, Toshiyuki NOHIRA, Kouji YASUDA, Kouji HIDAKA
  • Patent number: 10487395
    Abstract: A method of manufacturing a diamond substrate includes: forming an ion implantation layer at a side of a main surface of a diamond seed substrate by implanting ions into the main surface of the diamond seed substrate; producing a diamond structure by growing a diamond growth layer by a vapor phase synthesis method on the main surface of the diamond seed substrate, after implanting the ions; and performing heat treatment on the diamond structure. The performed heat treatment causes the diamond structure to be separated along the ion implantation layer into a first structure including the diamond seed substrate and failing to include the diamond growth layer, and a diamond substrate including the diamond growth layer. Thus, the method of manufacturing a diamond substrate is provided that enables a diamond substrate with a large area to be manufactured in a short time and at a low cost.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: November 26, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takuji Okahisa, Yoshiyuki Yamamoto, Yoshiki Nishibayashi, Natsuo Tatsumi
  • Publication number: 20190218685
    Abstract: In a single-crystal diamond material, a concentration of non-substitutional nitrogen atoms is not more than 200 ppm, a concentration of substitutional nitrogen atoms is lower than the concentration of the non-substitutional nitrogen atoms, and the single-crystal diamond material has a crystal growth main surface having an off angle of not more than 20°. A perforated tool includes a single-crystal diamond die, wherein in the single-crystal diamond die, a concentration of non-substitutional nitrogen atoms is not more than 200 ppm, a concentration of substitutional nitrogen atoms is lower than the concentration of the non-substitutional nitrogen atoms, and the single-crystal diamond die has a low-index plane represented by a Miller index of not less than ?5 and not more than 5 in an integer, a perpendicular line of the low-index plane having an off angle of not more than 20° relative to an orientation of a hole for wire drawing.
    Type: Application
    Filed: March 20, 2019
    Publication date: July 18, 2019
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC HARDMETAL CORP.
    Inventors: Yoshiki Nishibayashi, Natsuo Tatsumi, Hitoshi Sumiya, Akihiko Ueda, Yutaka Kobayashi
  • Patent number: 10316430
    Abstract: Single crystal diamond of which hardness and chipping resistance have been improved in a balanced manner, a method for manufacturing the single crystal diamond, and a tool containing the diamond are provided. Single crystal diamond contains nitrogen atoms, and a ratio of the number of isolated substitutional nitrogen atoms in the single crystal diamond to the total number of nitrogen atoms in the single crystal diamond is not lower than 0.02% and lower than 40%.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: June 11, 2019
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC HARDMETAL CORP.
    Inventors: Yoshiki Nishibayashi, Natsuo Tatsumi, Hitoshi Sumiya, Akihiko Ueda, Yutaka Kobayashi
  • Patent number: 10304739
    Abstract: A method for manufacturing a semiconductor substrate according to the present invention includes preparing a seed substrate containing a semiconductor material, forming an ion implanted layer at a certain depth from a front surface of a main surface of the seed substrate by implanting ions into the seed substrate, growing a semiconductor layer on the main surface of the seed substrate with a vapor-phase synthesis method, and separating a semiconductor substrate including the semiconductor layer and a part of the seed substrate by irradiating the front surface of the main surface of at least any of the semiconductor layer and the seed substrate with light.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: May 28, 2019
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yoshiki Nishibayashi, Kazuo Nakamae
  • Patent number: 10287708
    Abstract: In a single-crystal diamond material, a concentration of non-substitutional nitrogen atoms is not more than 200 ppm, a concentration of substitutional nitrogen atoms is lower than the concentration of the non-substitutional nitrogen atoms, and the single-crystal diamond material has a crystal growth main surface having an off angle of not more than 20°. A perforated tool includes a single-crystal diamond die, wherein in the single-crystal diamond die, a concentration of non-substitutional nitrogen atoms is not more than 200 ppm, a concentration of substitutional nitrogen atoms is lower than the concentration of the non-substitutional nitrogen atoms, and the single-crystal diamond die has a low-index plane represented by a Miller index of not less than ?5 and not more than 5 in an integer, a perpendicular line of the low-index plane having an off angle of not more than 20° relative to an orientation of a hole for wire drawing.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: May 14, 2019
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC HARDMETAL CORP.
    Inventors: Yoshiki Nishibayashi, Natsuo Tatsumi, Hitoshi Sumiya, Akihiko Ueda, Yutaka Kobayashi
  • Patent number: 10280531
    Abstract: A method for producing a diamond single crystal includes implanting an ion other than carbon into a surface of a diamond single crystal seed substrate and thereby decreasing the transmittance of light having a wavelength of 800 nm, the surface having an off-angle of 7 degrees or less with respect to a {100} plane, and homoepitaxially growing a diamond single crystal on the ion-implanted surface of the seed substrate using a chemical vapor synthesis under synthesis conditions where the ratio NC/NH of the number of carbon-containing molecules NC to the number of hydrogen molecules NH in a gas phase is 10% or more and 40% or less, the ratio NN/NC of the number of nitrogen molecules NN to the number of carbon-containing molecules NC in the gas phase is 0.1% or more and 10% or less, and the seed substrate temperature T is 850° C. or more and less than 1000° C.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: May 7, 2019
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Akihiko Ueda, Yoshiki Nishibayashi, Hitoshi Sumiya
  • Publication number: 20190031515
    Abstract: Provided is a method for manufacturing a single-crystal diamond, the method including the steps of: forming a protective film on at least a part of a surface of an auxiliary plate; preparing a diamond seed crystal substrate; disposing an auxiliary plate with a protective film that has the protective film formed on the auxiliary plate, and a diamond seed crystal substrate in a chamber; and growing a single-crystal diamond on a principal surface of the diamond seed crystal substrate by a chemical vapor deposition method while introducing a carbon-containing gas into the chamber.
    Type: Application
    Filed: January 18, 2017
    Publication date: January 31, 2019
    Inventors: Takuya Nohara, Natsuo Tatsumi, Yoshiki Nishibayashi, Hitoshi Sumiya, Yutaka Kobayashi, Akihiko Ueda