Patents by Inventor Yoshiko OKADA

Yoshiko OKADA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11139095
    Abstract: A multilayer coil component including: a magnetic part that contains Fe, Zn, V, and Ni and optionally contains Mn and/or Cu; and a conductor part that contains copper. In the magnetic part, Fe is in an amount of 34.0 to 48.5 mol % expressed as Fe2O3 equivalent, Zn is in an amount of 6.0 to 45.0 mol % expressed as ZnO equivalent, Mn is in an amount of 0 to 7.5 mol % expressed as Mn2O3 equivalent, Cu is in an amount of 0 to 5.0 mol % expressed as CuO equivalent, and V is in an amount of 0.5 to 5.0 mol % expressed as V2O5 equivalent, with respect to the total amount of Fe expressed as Fe2O3 equivalent, Zn expressed as ZnO equivalent, V expressed as V2O5 equivalent, and Ni expressed as NiO equivalent, and optionally present Cu expressed as CuO equivalent and optionally present Mn expressed as Mn2O3 equivalent.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: October 5, 2021
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoshiko Okada, Atsushi Yamamoto
  • Patent number: 9748034
    Abstract: A laminated coil component that can use inexpensive copper as an internal conductor, and has excellent direct current superimposition characteristics is provided. In a laminated coil component including: a magnetic section including a ferrite material; a non-magnetic section including a non-magnetic ferrite material; and a coiled conductor section containing copper as a main component embedded inside the magnetic section and the non-magnetic section, the non-magnetic section contains at least Fe, Mn and Zn, and optionally Cu. The non-magnetic section has a Fe content of 40.0 mol % to 48.5 mol % in terms of Fe2O3, a Mn content of 0.5 mol % to 9 mol % in terms of Mn2O3 and a Cu content of 8 mol % or less in terms of CuO.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: August 29, 2017
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yoshiko Okada
  • Publication number: 20170229223
    Abstract: A multilayer coil component including a magnetic part formed of a ferrite material, a non-magnetic part formed of a non-magnetic ferrite material, and a coiled conductive part embedded in the magnetic part and the non-magnetic part. The non-magnetic part has an Fe content of 36.0 to 48.5 mol % in terms of Fe2O3, a Zn content of 46.0 to 57.5 mol % in terms of ZnO, a V content of 0.5 to 5.0 mol % in terms of V2O5, a Mn content of 0 to 7.5 mol % in terms of Mn2O3, and a Cu content of 0 to 5.0 mol % in terms of CuO with respect to the sum of the Fe content in terms of Fe2O3, the Zn content in terms of ZnO, the V content in terms of V2O5, and if present, the Cu content in terms of CuO, and the Mn content in terms of Mn2O3.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventor: Yoshiko OKADA
  • Publication number: 20170229221
    Abstract: A multilayer coil component including: a magnetic part that contains Fe, Zn, V, and Ni and optionally contains Mn and/or Cu; and a conductor part that contains copper. In the magnetic part, Fe is in an amount of 34.0 to 48.5 mol % expressed as Fe2O3 equivalent, Zn is in an amount of 6.0 to 45.0 mol % expressed as ZnO equivalent, Mn is in an amount of 0 to 7.5 mol % expressed as Mn2O3 equivalent, Cu is in an amount of 0 to 5.0 mol % expressed as CuO equivalent, and V is in an amount of 0.5 to 5.0 mol % expressed as V2O5 equivalent, with respect to the total amount of Fe expressed as Fe2O3 equivalent, Zn expressed as ZnO equivalent, V expressed as V2O5 equivalent, and Ni expressed as NiO equivalent, and optionally present Cu expressed as CuO equivalent and optionally present Mn expressed as Mn2O3 equivalent.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Yoshiko OKADA, Atsushi YAMAMOTO
  • Patent number: 9558877
    Abstract: A coil conductor and a via electrode placed away from the coil conductor are embedded in a magnetic layer. The magnetic layer is sandwiched between a pair of non-magnetic layers. The coil conductor and the via electrode are formed from a conductive material containing Cu as its main constituent, and the magnetic layer is formed from Ni—Mn—Zn ferrite where the CuO molar content is 5 mol % or less, and (x, y) falls within the range of A (25, 1), B (47, 1), C (47, 7.5), D (45, 7.5), E (45, 10), F (35, 10), G (35, 7.5), and H (25, 7.5) when the molar content x of Fe2O3 and the molar content y of Mn2O3 are represented by (x, y). Thus, insulation properties can be ensured, favorable electrical characteristics can be achieved, and a ceramic electronic component is achieved which is able to be reduced in size.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: January 31, 2017
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoshiko Okada, Atsushi Yamamoto, Akihiro Nakamura
  • Patent number: 9370111
    Abstract: A ceramic multilayer substrate incorporating a chip-type ceramic component, in which, even if the chip-type ceramic component is mounted on the surface of the ceramic multilayer substrate, bonding strength between the chip-type ceramic component and an internal conductor or a surface electrode of the ceramic multilayer substrate is greatly improved and increased. The ceramic multilayer substrate includes a ceramic laminate in which a plurality of ceramic layers are stacked, an internal conductor disposed in the ceramic laminate, a surface electrode disposed on the upper surface of the ceramic laminate, and a chip-type ceramic component bonded to the internal conductor or the surface electrode through an external electrode. The internal conductor or the surface electrode is bonded to the external electrode through a connecting electrode, and the connecting electrode forms a solid solution with any of the internal conductor, the surface electrode, and the external electrode.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: June 14, 2016
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoshiko Okada, Osamu Chikagawa, Hidekiyo Takaoka, Shodo Takei
  • Publication number: 20150270056
    Abstract: A laminated coil component that can use inexpensive copper as an internal conductor, and has excellent direct current superimposition characteristics is provided. In a laminated coil component including: a magnetic section including a ferrite material; a non-magnetic section including a non-magnetic ferrite material; and a coiled conductor section containing copper as a main component embedded inside the magnetic section and the non-magnetic section, the non-magnetic section contains at least Fe, Mn and Zn, and optionally Cu. The non-magnetic section has a Fe content of 40.0 mol % to 48.5 mol % in terms of Fe2O3, a Mn content of 0.5 mol % to 9 mol % in terms of Mn2O3 and a Cu content of 8 mol % or less in terms of CuO.
    Type: Application
    Filed: June 4, 2015
    Publication date: September 24, 2015
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventor: Yoshiko OKADA
  • Publication number: 20140312539
    Abstract: A ceramic multilayer substrate incorporating a chip-type ceramic component, in which, even if the chip-type ceramic component is mounted on the surface of the ceramic multilayer substrate, bonding strength between the chip-type ceramic component and an internal conductor or a surface electrode of the ceramic multilayer substrate is greatly improved and increased. The ceramic multilayer substrate includes a ceramic laminate in which a plurality of ceramic layers are stacked, an internal conductor disposed in the ceramic laminate, a surface electrode disposed on the upper surface of the ceramic laminate, and a chip-type ceramic component bonded to the internal conductor or the surface electrode through an external electrode. The internal conductor or the surface electrode is bonded to the external electrode through a connecting electrode, and the connecting electrode forms a solid solution with any of the internal conductor, the surface electrode, and the external electrode.
    Type: Application
    Filed: July 1, 2014
    Publication date: October 23, 2014
    Inventors: Yoshiko OKADA, Osamu CHIKAGAWA, Hidekiyo TAKAOKA, Shodo TAKEI
  • Patent number: 8802998
    Abstract: A ceramic multilayer substrate incorporating a chip-type ceramic component, in which, even if the chip-type ceramic component is mounted on the surface of the ceramic multilayer substrate, bonding strength between the chip-type ceramic component and an internal conductor or a surface electrode of the ceramic multilayer substrate is greatly improved and increased. The ceramic multilayer substrate includes a ceramic laminate in which a plurality of ceramic layers are stacked, an internal conductor disposed in the ceramic laminate, a surface electrode disposed on the upper surface of the ceramic laminate, and a chip-type ceramic component bonded to the internal conductor or the surface electrode through an external electrode. The internal conductor or the surface electrode is bonded to the external electrode through a connecting electrode, and the connecting electrode forms a solid solution with any of the internal conductor, the surface electrode, and the external electrode.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: August 12, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoshiko Okada, Osamu Chikagawa, Hidekiyo Takaoka, Shodo Takei
  • Publication number: 20140176286
    Abstract: A coil conductor and a via electrode placed away from the coil conductor are embedded in a magnetic layer. The magnetic layer is sandwiched between a pair of non-magnetic layers. The coil conductor and the via electrode are formed from a conductive material containing Cu as its main constituent, and the magnetic layer is formed from Ni—Mn—Zn ferrite where the CuO molar content is 5 mol % or less, and (x, y) falls within the range of A (25, 1), B (47, 1), C (47, 7.5), D (45, 7.5), E (45, 10), F (35, 10), G (35, 7.5), and H (25, 7.5) when the molar content x of Fe2O3 and the molar content y of Mn2O3 are represented by (x, y). Thus, insulation properties can be ensured, favorable electrical characteristics can be achieved, and a ceramic electronic component is achieved which is able to be reduced in size.
    Type: Application
    Filed: February 27, 2014
    Publication date: June 26, 2014
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Yoshiko OKADA, Atsushi YAMAMOTO, Akihiro NAKAMURA
  • Publication number: 20100155118
    Abstract: A ceramic multilayer substrate incorporating a chip-type ceramic component, in which, even if the chip-type ceramic component is mounted on the surface of the ceramic multilayer substrate, bonding strength between the chip-type ceramic component and an internal conductor or a surface electrode of the ceramic multilayer substrate is greatly improved and increased. The ceramic multilayer substrate includes a ceramic laminate in which a plurality of ceramic layers are stacked, an internal conductor disposed in the ceramic laminate, a surface electrode disposed on the upper surface of the ceramic laminate, and a chip-type ceramic component bonded to the internal conductor or the surface electrode through an external electrode. The internal conductor or the surface electrode is bonded to the external electrode through a connecting electrode, and the connecting electrode forms a solid solution with any of the internal conductor, the surface electrode, and the external electrode.
    Type: Application
    Filed: March 10, 2010
    Publication date: June 24, 2010
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Yoshiko OKADA, Osamu CHIKAGAWA, Hidekiyo TAKAOKA, Shodo TAKEI