Patents by Inventor Yoshio Kodera

Yoshio Kodera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240181894
    Abstract: The electric vehicle according to the present disclosure calculates motor torque using an MT vehicle model simulating an MT vehicle having a manual transmission and an internal combustion engine. In the first operation mode, an operation amount of a pseudo-clutch pedal and a shift position of a pseudo-gearshift are input to the MT vehicle model to reflect operation of the pseudo-clutch pedal and operation of the pseudo-gearshift in electric motor control. In the second operation mode where the operation of the pseudo-clutch pedal is not needed, an operation amount of a clutch pedal calculated by a driver model is input to the MT vehicle model instead of the operation amount of the pseudo-clutch pedal.
    Type: Application
    Filed: February 9, 2024
    Publication date: June 6, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akiko NISHIMINE, Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Tatsuya Imamura, Hiroaki Ebuchi, Hiroaki Kodera
  • Patent number: 11999243
    Abstract: An electric vehicle includes a shift lever and a clutch pedal for simulating manual gear changes of a traditional vehicle equipped with an internal combustion engine and manual transmission, and includes a controller for controlling the operation of the electric vehicle. The driver operates the shift lever in a similar fashion to that of a traditional manual transmission shift lever, however the associated gear positions do not correspond to physical gears in a transmission but rather virtual gear stage modes that correspond to mapped torque characteristics with respect to the rotational speed of the electric motor. The clutch pedal is operated by the driver when the shift lever is operated. The controller calculates the virtual engine speed of the virtual engine based on the virtual gear stage mode selected by the shift lever and the operation amount of the clutch pedal, and displays the virtual engine speed on a display.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: June 4, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Tatsuya Imamura, Akiko Nishimine, Hiroaki Ebuchi, Hiroaki Kodera
  • Patent number: 11993250
    Abstract: A drive force control system for a vehicle configured to accurately imitate a change in a drive force in a model vehicle. A drive torque simulator computes a virtual drive torque supposed to be delivered to drive wheels of the model vehicle in response to a manual operation to manipulate the vehicle, based on torque changing factors of a powertrain of the model vehicle. An actual torque calculator computes a target torque of a motor that is practically delivered to the drive wheels in the vehicle based on the virtual drive torque computed by the drive torque simulator, taking account of torque changing factors of the powertrain of the vehicle.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: May 28, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tatsuya Imamura, Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Akiko Nishimine, Hiroaki Ebuchi, Hiroaki Kodera
  • Patent number: 11932118
    Abstract: The electric vehicle according to the present disclosure calculates motor torque using an MT vehicle model simulating an MT vehicle having a manual transmission and an internal combustion engine. In the first operation mode, an operation amount of a pseudo-clutch pedal and a shift position of a pseudo-gearshift are input to the MT vehicle model to reflect operation of the pseudo-clutch pedal and operation of the pseudo-gearshift in electric motor control. In the second operation mode where the operation of the pseudo-clutch pedal is not needed, an operation amount of a clutch pedal calculated by a driver model is input to the MT vehicle model instead of the operation amount of the pseudo-clutch pedal.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: March 19, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akiko Nishimine, Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Tatsuya Imamura, Hiroaki Ebuchi, Hiroaki Kodera
  • Patent number: 11926222
    Abstract: An electric vehicle is configured to be able to perform running by an MT mode that controls an electric motor with a torque characteristic like an MT vehicle having a manual transmission and an internal combustion engine, and running by an EV mode that controls the electric motor with a normal torque characteristic. The electric vehicle includes a mode changeover switch for switching to the running by the MT mode.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: March 12, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoichiro Isami, Yoshio Itou, Hiroyuki Amano, Tatsuya Imamura, Akiko Nishimine, Hiroaki Ebuchi, Hiroaki Kodera
  • Publication number: 20130236984
    Abstract: (Problem to be Solved) There is to be provided a method for extracting low-molecular-weight proteins/peptides contained in a body fluid sample, particularly, in serum or plasma. (Means for Solution) The method according to the present invention comprises the steps of (a) to (e): (a) adding reagent 1 containing urea and thiourea and reagent 2 containing a reducing agent to the body fluid sample, mixing them, subsequently dropping the mixture into reagent 3 containing 90% or more of an organic solvent, and mixing them; (b) stirring at a low temperature the mixed solution obtained in step (a); (c) centrifuging at a low temperature the stirred solution obtained in step (b) and removing the supernatant; (d) adding reagent 4 containing an organic solvent and an acid to the precipitate obtained in step (c) and mixing them; (e) stirring at a low temperature the mixed solution obtained in step (d); and (f) centrifuging at a low temperature the stirred solution obtained in step (e) and recovering the supernatant.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 12, 2013
    Applicant: SCHOOL JURIDICAL PERSON KITASATO INSTITUTE
    Inventors: Yoshio Kodera, Tadakazu Maeda, Yusuke Kawashima
  • Patent number: 8399260
    Abstract: A method for extracting low-molecular-weight proteins/peptides contained in a body fluid sample, particularly, in serum or plasma. The method includes the steps of (a) to (e): (a) adding reagent 1 containing urea and thiourea and reagent 2 containing a reducing agent to the body fluid sample, mixing them, subsequently dropping the mixture into reagent 3 containing 90% or more of an organic solvent, and mixing them; (b) stirring at a low temperature the mixed solution obtained in step (a); (c) centrifuging at a low temperature the stirred solution obtained in step (b) and removing the supernatant; (d) adding reagent 4 containing an organic solvent and an acid to the precipitate obtained in step (c) and mixing them; (e) stirring at a low temperature the mixed solution obtained in step (d); and (f) centrifuging at a low temperature the stirred solution obtained in step (e) and recovering the supernatant.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: March 19, 2013
    Assignee: School Juridical Person Kitasato Institute
    Inventors: Yoshio Kodera, Tadakazu Maeda, Yusuke Kawashima
  • Publication number: 20110177601
    Abstract: A method for extracting low-molecular-weight proteins/peptides contained in a body fluid sample, particularly, in serum or plasma. The method includes the steps of (a) to (e): (a) adding reagent 1 containing urea and thiourea and reagent 2 containing a reducing agent to the body fluid sample, mixing them, subsequently dropping the mixture into reagent 3 containing 90% or more of an organic solvent, and mixing them; (b) stirring at a low temperature the mixed solution obtained in step (a); (c) centrifuging at a low temperature the stirred solution obtained in step (b) and removing the supernatant; (d) adding reagent 4 containing an organic solvent and an acid to the precipitate obtained in step (c) and mixing them; (e) stirring at a low temperature the mixed solution obtained in step (d); and (f) centrifuging at a low temperature the stirred solution obtained in step (e) and recovering the supernatant.
    Type: Application
    Filed: August 8, 2008
    Publication date: July 21, 2011
    Inventors: Yoshio Kodera, Tadakazu Maeda, Yusuke Kawashima