Patents by Inventor Yoshio Nonaka

Yoshio Nonaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9222915
    Abstract: An eddy current flaw detection system includes an eddy current flaw detection probe having a substrate facing an inspection surface, and at least one exciting coil and at least two detecting coils provided on the substrate, a scanning device which scans the probe on the inspection surface, a scan control device which drives and controls the scanning device, an eddy current flaw detection device which acquires results of detection of a plurality of detection points corresponding to combinations of the exciting and detecting coils for each scan position of the probe, and a data processing/display device which processes data from the scan control device and the eddy current flaw detection device and thereby displays a result of flaw detection. The data processing/display device acquires three-dimensional coordinates of the detection points for each scan position of the probe and thereby creates three-dimensional flaw detection data.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: December 29, 2015
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Akira Nishimizu, So Kitazawa, Naoyuki Kono, Hisashi Endo, Kenichi Otani, Taiichiro Yamada, Hirofumi Ouchi, Isao Yoshida, Yoshio Nonaka, Masafumi Imai
  • Patent number: 8619939
    Abstract: An object of the present invention is to provide an inspection apparatus for inspecting weld zones in a reactor pressure vessel, the inspection apparatus comprising: an ultrasonic probe 6 for emitting an ultrasonic wave; a probe holding unit 60 for holding the ultrasonic probe 6 such that a ultrasonic wave transmitting surface of the ultrasonic probe 6 is kept in direct contact with or at a constant distance from the outer surface of the reactor pressure vessel 1; a pressing unit 50 for pressing the probe holding unit 60 parallel to a central axis of a control rod drive housing 8 against the reactor pressure vessel; and a rotator 40 for rotating the probe holding unit 60 and the pressing unit 50 about the central axis of the control rod drive housing 8.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: December 31, 2013
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Motoyuki Nakamura, Yoshio Nonaka, Naoyuki Kono, Masahiro Miki, Satoshi Shinohara
  • Patent number: 8616062
    Abstract: In an ultrasonic inspection method or ultrasonic inspection system in which an ultrasonic wave is propagated to an test object via a medium such as a liquid or a gas, an incident position of the ultrasonic wave is accurately and reliably identified. In an ultrasonic inspection method based on an immersion technique, an optical irradiator is mounted on an ultrasonic wave transmitting/receiving unit, an optical marker is irradiated from the optical irradiator to the test object, and an irradiated position of the optical marker is imaged using imaging equipment in order to perform inspection.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: December 31, 2013
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Naoyuki Kono, Isao Yoshida, Masahiro Koike, Yoshio Nonaka, Hiroyuki Nakano, Kenichi Otani, Chihiro Matsuoka, Masafumi Imai
  • Patent number: 8576974
    Abstract: An object of the present invention is to provide an inspection apparatus for inspecting weld zones in a reactor pressure vessel, the inspection apparatus comprising: an ultrasonic probe 6 for emitting an ultrasonic wave; a probe holding unit 60 for holding the ultrasonic probe 6 such that a ultrasonic wave transmitting surface of the ultrasonic probe 6 is kept in direct contact with or at a constant distance from the outer surface of the reactor pressure vessel 1; a pressing unit 50 for pressing the probe holding unit 60 parallel to a central axis of a control rod drive housing 8 against the reactor pressure vessel; and a rotator 40 for rotating the probe holding unit 60 and the pressing unit 50 about the central axis of the control rod drive housing 8.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: November 5, 2013
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Motoyuki Nakamura, Yoshio Nonaka, Naoyuki Kono, Masahiro Miki, Satoshi Shinohara
  • Patent number: 8339130
    Abstract: The surface length of a metal subject to be inspected is evaluated by detecting an eddy current without using a combination of a scale and visual or liquid penetrant inspection. An exciting coil and a detecting coil are scanned above the subject in a length direction. An eddy current detector measures an output voltage corresponding to scanning positions based on an output from the detecting coil. Based on an output voltage distribution curve indicating a distribution of output voltages corresponding to the scanning positions, position information is extracted corresponding to values which are within a differential voltage range and lower by 12 dB than a maximum value of the output voltages on the left and right sides of the distribution. A distance between the positions included in the extracted information is calculated to evaluate the length of a slit which is a defect present on the subject surface.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: December 25, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Akira Nishimizu, Yoshio Nonaka, Isao Yoshida, Motoyuki Nakamura, Akihiro Taki, Masahiro Koike
  • Patent number: 8250923
    Abstract: An ultrasonic inspection method and ultrasonic inspection apparatus is capable of inspecting a weld line and of detecting a circumferential crack and an axial crack that are present in the weld line. An ultrasonic probe is placed on the surface of a structure and transmits an ultrasonic wave. The ultrasonic wave is transmitted at an angle in an X?-Z plane. The direction of a normal to the surface is defined as an X axis. The direction in which the weld line extends is defined as a Y axis. The direction perpendicular to the X axis and the Y axis is defined as a Z axis. An axis obtained by rotating the X axis around the Z axis is defined as an X? axis. A control mechanism performs signal processing of signals reflected from the defect or defects to detect the defect or defects and to measure the length of the defect or defects.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: August 28, 2012
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Kazuya Ehara, Naoyuki Kono, Masahiro Miki, Yoshio Nonaka
  • Patent number: 8228058
    Abstract: Disclosed is an eddy current flaw detection probe that is capable of pressing itself against an inspection target whose curvature varies. A flaw sensor is configured by fastening a plurality of coils to a flexible substrate that faces the surface of the inspection target. A first elastic body is positioned opposite the inspection target for the flaw sensor, is obtained by stacking two or more elastic plates, and has an elastic coefficient that varies in a longitudinal direction. A second elastic body is a porous body positioned between the flexible substrate and the first elastic body. A pressure section is employed to press the first elastic body toward the inspection target.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: July 24, 2012
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Akira Nishimizu, Hirofumi Ouchi, Yoshio Nonaka, Yosuke Takatori, Akihiro Taki, Makoto Senoo
  • Patent number: 8183862
    Abstract: An eddy current testing device which confirms that a change in characteristics of a target object is detected regardless of the magnitude of the change and specifying the position of a portion from which the change is detected. The device uses an eddy current probe to inspect a bent portion of a metal body, and has an inspection controller and a display unit. The inspection controller calculates a phase angle of a signal detected by the eddy current probe and generates flaw identification image data that indicates an area (or an area of the signal detected and determined to correspond to a flaw signal, based on the phase angle of the detected signal) of a flaw signal in coordinates in which the position of the portion of the target object is plotted along a coordinate axis. The display unit displays the flaw identification image data.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: May 22, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Hisashi Endo, Akira Nishimizu, Hirofumi Ouchi, Yoshio Nonaka
  • Publication number: 20110197679
    Abstract: In an ultrasonic inspection method or ultrasonic inspection system in which an ultrasonic wave is propagated to an test object via a medium such as a liquid or a gas, an incident position of the ultrasonic wave is accurately and reliably identified. In an ultrasonic inspection method based on an immersion technique, an optical irradiator is mounted on an ultrasonic wave transmitting/receiving unit, an optical marker is irradiated from the optical irradiator to the test object, and an irradiated position of the optical marker is imaged using imaging equipment in order to perform inspection.
    Type: Application
    Filed: February 16, 2011
    Publication date: August 18, 2011
    Applicant: HITACHI-GE NUCLEAR ENERGY, LTD.
    Inventors: Naoyuki KONO, Isao YOSHIDA, Masahiro KOIKE, Yoshio NONAKA, Hiroyuki NAKANO, Kenichi OTANI, Chihiro MATSUOKA, Masafumi IMAI
  • Publication number: 20110148404
    Abstract: The surface length of a metal subject to be inspected is evaluated by detecting an eddy current without using a combination of a scale and visual or liquid penetrant inspection. An exciting coil and a detecting coil are scanned above the subject in a length direction. An eddy current detector measures an output voltage corresponding to scanning positions based on an output from the detecting coil. Based on an output voltage distribution curve indicating a distribution of output voltages corresponding to the scanning positions, position information is extracted corresponding to values which are within a differential voltage range and lower by 12 dB than a maximum value of the output voltages on the left and right sides of the distribution. A distance between the positions included in the extracted information is calculated to evaluate the length of a slit which is a defect present on the subject surface.
    Type: Application
    Filed: February 16, 2011
    Publication date: June 23, 2011
    Inventors: Akira NISHIMIZU, Yoshio Nonaka, Isao Yoshida, Motoyuki Nakamura, Akihiro Taki, Masahiro Koike
  • Publication number: 20110103536
    Abstract: An object of the present invention is to provide an inspection apparatus for inspecting weld zones in a reactor pressure vessel, the inspection apparatus comprising: an ultrasonic probe 6 for emitting an ultrasonic wave; a probe holding unit 60 for holding the ultrasonic probe 6 such that a ultrasonic wave transmitting surface of the ultrasonic probe 6 is kept in direct contact with or at a constant distance from the outer surface of the reactor pressure vessel 1; a pressing unit 50 for pressing the probe holding unit 60 parallel to a central axis of a control rod drive housing 8 against the reactor pressure vessel; and a rotator 40 for rotating the probe holding unit 60 and the pressing unit 50 about the central axis of the control rod drive housing 8.
    Type: Application
    Filed: January 7, 2011
    Publication date: May 5, 2011
    Inventors: Motoyuki Nakamura, Yoshio Nonaka, Naoyuki Kono, Masahiro Miki, Satoshi Shinohara
  • Publication number: 20110096888
    Abstract: An object of the present invention is to provide an inspection apparatus for inspecting weld zones in a reactor pressure vessel, the inspection apparatus comprising: an ultrasonic probe 6 for emitting an ultrasonic wave; a probe holding unit 60 for holding the ultrasonic probe 6 such that a ultrasonic wave transmitting surface of the ultrasonic probe 6 is kept in direct contact with or at a constant distance from the outer surface of the reactor pressure vessel 1; a pressing unit 50 for pressing the probe holding unit 60 parallel to a central axis of a control rod drive housing 8 against the reactor pressure vessel; and a rotator 40 for rotating the probe holding unit 60 and the pressing unit 50 about the central axis of the control rod drive housing 8.
    Type: Application
    Filed: January 7, 2011
    Publication date: April 28, 2011
    Inventors: Motoyuki NAKAMURA, Yoshio NONAKA, Naoyuki KONO, Masahiro MIKI, Satoshi SHINOHARA
  • Patent number: 7929656
    Abstract: An object of the present invention is to provide an inspection apparatus for inspecting weld zones in a reactor pressure vessel, the inspection apparatus comprising: an ultrasonic probe 6 for emitting an ultrasonic wave; a probe holding unit 60 for holding the ultrasonic probe 6 such that a ultrasonic wave transmitting surface of the ultrasonic probe 6 is kept in direct contact with or at a constant distance from the outer surface of the reactor pressure vessel 1; a pressing unit 50 for pressing the probe holding unit 60 parallel to a central axis of a control rod drive housing 8 against the reactor pressure vessel; and a rotator 40 for rotating the probe holding unit 60 and the pressing unit 50 about the central axis of the control rod drive housing 8.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: April 19, 2011
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Motoyuki Nakamura, Yoshio Nonaka, Naoyuki Kono, Masahiro Miki, Satoshi Shinohara
  • Patent number: 7911206
    Abstract: The surface length of a metal subject to be inspected is evaluated by detecting an eddy current without using a combination of a scale and visual or liquid penetrant inspection. An exciting coil and a detecting coil are scanned above the subject in a length direction. An eddy current detector measures an output voltage corresponding to scanning positions based on an output from the detecting coil. Based on an output voltage distribution curve indicating a distribution of output voltages corresponding to the scanning positions, position information is extracted corresponding to values which are within a differential voltage range and lower by 12 dB than a maximum value of the output voltages on the left and right sides of the distribution. A distance between the positions included in the extracted information is calculated to evaluate the length of a slit which is a defect present on the subject surface.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 22, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Akira Nishimizu, Yoshio Nonaka, Isao Yoshida, Motoyuki Nakamura, Akihiro Taki, Masahiro Koike
  • Patent number: 7693251
    Abstract: The ultrasonic probe of the ultrasonic inspection apparatus, which is pushed onto the outer surface of the reactor pressure vessel, transmits and receives an ultrasonic wave to and from a penetration having a welded portion while changing an incident angle of the ultrasonic wave. Based on a result of reception of an echo obtained by the reflection of the ultrasonic wave on the inner surface of the penetration, an inclination angle of the penetration relative to a wall surface of the reactor pressure vessel is measured. A circumferential direction position of the penetration, which corresponds to the inclination angle, is calculated based on the relationship of an inclination angle and a circumferential direction position, which have been calculated in advance. Then, the circumferential direction position can be obtained as information on the inspection position.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: April 6, 2010
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Naoyuki Kono, Masahiro Miki, Yoshio Nonaka, Motoyuki Nakamura
  • Publication number: 20090235749
    Abstract: The present invention provides an ultrasonic inspection method and ultrasonic inspection apparatus capable of easily inspecting a weld line and detecting a circumferential crack and an axial crack that are present in the weld line. An ultrasonic probe is placed on the surface of a structure and transmits an ultrasonic wave. A welded part is present on the opposite surface to the surface on which the ultrasonic probe is placed. The ultrasonic wave is transmitted at an optional in an X?-Z plane defined by an X? axis and a Z axis, when the direction of a normal to the surface on which the ultrasonic probe is placed is defined as an X axis, the direction in which the weld line extends is defined as a Y axis, the direction perpendicular to the X axis and the Y axis is defined as a Z axis, and an axis obtained by rotating the X axis around the Z axis is defined as an X? axis.
    Type: Application
    Filed: February 19, 2009
    Publication date: September 24, 2009
    Inventors: Kazuya Ehara, Naoyuki Kono, Masahiro Miki, Yoshio Nonaka
  • Publication number: 20090230952
    Abstract: An eddy current testing device which confirms that a change in characteristics of a target object is detected regardless of the magnitude of the change and specifying the position of a portion from which the change is detected. The device uses an eddy current probe to inspect a bent portion of a metal body, and has an inspection controller and a display unit. The inspection controller calculates a phase angle of a signal detected by the eddy current probe and generates flaw identification image data that indicates an area (or an area of the signal detected and determined to correspond to a flaw signal, based on the phase angle of the detected signal) of a flaw signal in coordinates in which the position of the portion of the target object is plotted along a coordinate axis. The display unit displays the flaw identification image data.
    Type: Application
    Filed: February 20, 2009
    Publication date: September 17, 2009
    Inventors: Hisashi Endo, Akira Nishimizu, Hirofumi Ouchi, Yoshio Nonaka
  • Publication number: 20090122942
    Abstract: An object of the present invention is to provide an inspection apparatus for inspecting weld zones in a reactor pressure vessel, the inspection apparatus comprising: an ultrasonic probe 6 for emitting an ultrasonic wave; a probe holding unit 60 for holding the ultrasonic probe 6 such that a ultrasonic wave transmitting surface of the ultrasonic probe 6 is kept in direct contact with or at a constant distance from the outer surface of the reactor pressure vessel 1; a pressing unit 50 for pressing the probe holding unit 60 parallel to a central axis of a control rod drive housing 8 against the reactor pressure vessel; and a rotator 40 for rotating the probe holding unit 60 and the pressing unit 50 about the central axis of the control rod drive housing 8.
    Type: Application
    Filed: August 13, 2008
    Publication date: May 14, 2009
    Inventors: Motoyuki Nakamura, Yoshio Nonaka, Naoyuki Kono, Masahiro Miki, Satoshi Shinohara
  • Publication number: 20090009162
    Abstract: Disclosed is an eddy current flaw detection probe that is capable of pressing itself against an inspection target whose curvature varies. A flaw sensor is configured by fastening a plurality of coils to a flexible substrate that faces the surface of the inspection target. A first elastic body is positioned opposite the inspection target for the flaw sensor, is obtained by stacking two or more elastic plates, and has an elastic coefficient that varies in a longitudinal direction. A second elastic body is a porous body positioned between the flexible substrate and the first elastic body. A pressure section is employed to press the first elastic body toward the inspection target.
    Type: Application
    Filed: May 28, 2008
    Publication date: January 8, 2009
    Inventors: Akira NISHIMIZU, Hirofumi Ouchi, Yoshio Nonaka, Yosuke Takatori, Akihiro Taki, Makoto Senoo
  • Publication number: 20080037695
    Abstract: The present invention provides a method and apparatus for an ultrasonic inspection of a penetration of a reactor pressure vessel, especially, a welded portion of the penetration. In the ultrasonic inspection, a position (inspection position) of an ultrasonic probe relative to a portion to be inspected can be identified without an effect of the surface of a portion to be inspected. The ultrasonic probe of the ultrasonic inspection apparatus, which is pushed onto the outer surface of the reactor pressure vessel, transmits and receives an ultrasonic wave to and from a penetration having a welded portion while changing an incident angle of the ultrasonic wave. Based on a result of reception of an echo obtained by the reflection of the ultrasonic wave on the inner surface of the penetration, an inclination angle of the penetration relative to a wall surface of the reactor pressure vessel is measured.
    Type: Application
    Filed: August 6, 2007
    Publication date: February 14, 2008
    Inventors: Naoyuki KONO, Masahiro MIKI, Yoshio NONAKA, Motoyuki NAKAMURA