Patents by Inventor Yoshitaka Kurosaka

Yoshitaka Kurosaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971643
    Abstract: A reflective dynamic metasurface of an embodiment comprises a structure enabling phase modulation in each of pixels constituting at least a one-dimensional array. The metasurface includes: a laminated structure body having a transparent conductive layer and a dielectric layer; a first metal film on one surface of the laminated structure body; a second metal film on the other surface of the laminated structure body; and a drive circuit controlling voltage applied between the first and second metal films. The first and second metal films are arranged to sandwich the pixels. The first metal film is arranged to expose a pair of window regions in one pixel, and the second metal film includes partial metal films defining the shape of each pixel and separated from each other. The drive circuit individually controls the potential of each partial metal film, thereby modulating the phase of the input light for each pixel.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: April 30, 2024
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Soh Uenoyama, Kazuyoshi Hirose, Yoshitaka Kurosaka, Hiroshi Tanaka
  • Patent number: 11923655
    Abstract: The present embodiment relates to a light emission device capable of removing zero-order light from output light of an S-iPM laser. The light emission device comprises an active layer and a phase modulation layer. The phase modulation layer includes a base layer and a plurality of modified refractive index regions. In a state in which a virtual square lattice is set on the phase modulation layer, a center of gravity of each modified refractive index region is separated from a corresponding lattice point, and a rotation angle around each lattice point that decides a position of the center of gravity of each modified refractive index region is set according to a phase distribution for forming an optical image. A lattice spacing and an emission wavelength satisfy a condition of M-point oscillation in a reciprocal lattice space of the phase modulation layer.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: March 5, 2024
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuyoshi Hirose, Yuu Takiguchi, Takahiro Sugiyama, Yoshitaka Kurosaka
  • Patent number: 11777276
    Abstract: The present embodiment relates to a single semiconductor light-emitting element including a plurality of light-emitting portions each of which is capable of generating light of a desired beam projection pattern and a method for manufacturing the semiconductor light-emitting element. In the semiconductor light-emitting element, an active layer and a phase modulation layer are formed on a common substrate layer, and the phase modulation layer includes at least a plurality of phase modulation regions arranged along the common substrate layer. The plurality of phase modulation regions are obtained by separating the phase modulation layer into a plurality of places after manufacturing the phase modulation layer, and as a result, the semiconductor light-emitting element provided with a plurality of light-emitting portions that have been accurately aligned can be obtained through a simple manufacturing process as compared with the related art.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: October 3, 2023
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takahiro Sugiyama, Yuu Takiguchi, Yoshitaka Kurosaka, Kazuyoshi Hirose, Yoshiro Nomoto, Soh Uenoyama
  • Patent number: 11686956
    Abstract: The present embodiment relates to a light-emitting device that enables reduction in attenuation or diffraction effect caused by a semiconductor light-emitting device with respect to modulated light outputted from a spatial light modulator, and the light-emitting device includes the semiconductor light-emitting device that outputs light from a light output surface and the reflection type spatial light modulator that modulates the light. The spatial light modulator includes a light input/output surface having the area larger than the area of a light input surface of the semiconductor light-emitting device, modulates light taken through a region facing the light output surface of the semiconductor light-emitting device in the light input/output surface, and outputs the modulated light from another region of the light input/output surface to a space other than the light input surface of the semiconductor light-emitting device.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: June 27, 2023
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yuu Takiguchi, Kazuyoshi Hirose, Yoshitaka Kurosaka, Takahiro Sugiyama, Yoshiro Nomoto, Soh Uenoyama
  • Publication number: 20230198224
    Abstract: An optical device of one embodiment outputs light in a short-wavelength range such as a visible range. The optical device includes a UC layer, first and second light-confinement layers, and a resonance mode forming layer. The UC layer contains an upconversion material receiving excitation light in a first wavelength range and outputting light in a second wavelength range. The first light-confinement layer has a characteristic of reflecting part of the second wavelength-range light. The second light-confinement layer has a characteristic of reflecting part of the second wavelength-range light and transmitting the remainder, and is disposed such that the UC layer locates between the first and second light-confinement layers. The resonance mode forming layer locates between the UC layer and the first or second light-confinement layer, includes a base layer and plural modified refractive index regions, and forms a resonance mode of the second wavelength-range light.
    Type: Application
    Filed: May 27, 2021
    Publication date: June 22, 2023
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshitaka KUROSAKA, Kazuyoshi HIROSE, Yuu TAKIGUCHI, Akio ITO, Tadataka EDAMURA, Takahiko YAMANAKA, Shigeo HARA
  • Patent number: 11646546
    Abstract: The present embodiment relates to a single semiconductor light-emitting element including a plurality of light-emitting portions each of which is capable of generating light of a desired beam projection pattern and a method for manufacturing the semiconductor light-emitting element. In the semiconductor light-emitting element, an active layer and a phase modulation layer are formed on a common substrate layer, and the phase modulation layer includes at least a plurality of phase modulation regions arranged along the common substrate layer. The plurality of phase modulation regions are obtained by separating the phase modulation layer into a plurality of places after manufacturing the phase modulation layer, and as a result, the semiconductor light-emitting element provided with a plurality of light-emitting portions that have been accurately aligned can be obtained through a simple manufacturing process as compared with the related art.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: May 9, 2023
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takahiro Sugiyama, Yuu Takiguchi, Yoshitaka Kurosaka, Kazuyoshi Hirose, Yoshiro Nomoto, Soh Uenoyama
  • Patent number: 11637409
    Abstract: A semiconductor light-emitting module according to the present embodiment includes a plurality of semiconductor light-emitting elements each outputting light of a desired beam projection pattern; and a support substrate holding the plurality of semiconductor light-emitting elements. Each of the plurality of semiconductor light-emitting elements includes a phase modulation layer configured to form a target beam projection pattern in a target beam projection region. The plurality of semiconductor light-emitting elements include first and second semiconductor light-emitting elements that are different in terms of at least any of a beam projection direction, the target beam projection pattern, and a light emission wavelength.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: April 25, 2023
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takahiro Sugiyama, Yuu Takiguchi, Yoshitaka Kurosaka, Kazuyoshi Hirose, Yoshiro Nomoto, Soh Uenoyama
  • Patent number: 11626709
    Abstract: The embodiment relates to a light-emitting device in which a positional relationship between a modified refractive index region's gravity-center position and the associated lattice point differs from a conventional device, and a production method. In this device, a stacked body including a light-emitting portion and a phase modulation layer optically coupled to the light-emitting portion is on a substrate. The phase modulation layer includes a base layer and plural modified refractive index regions in the base layer. Each modified refractive index region's gravity-center position locates on a virtual straight line passing through a corresponding reference lattice point among lattice points of a virtual square lattice on the base layer's design plane. A distance between the reference lattice point and the modified refractive index region's gravity center along the virtual straight line is individually set such that this device outputs light forming an optical image.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: April 11, 2023
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuyoshi Hirose, Yoshitaka Kurosaka, Yuu Takiguchi, Takahiro Sugiyama
  • Publication number: 20230102430
    Abstract: An embodiment relates to a light source module dynamically controlling a phase distribution of light. The light source module includes a semiconductor stack portion. The semiconductor stack portion includes a stacked body including an active layer and a photonic crystal layer causing ?-point oscillation, and includes a phase synchronization portion and an intensity modulation portion which are arranged in a Y-direction as one resonance direction of the photonic crystal layer. The stacked body in the intensity modulation portion has M (?2) pixels each arranged in an X-direction and including N1 (?2) subpixels. A length of a region including consecutive N2 (?2, ?N1) subpixels among the N1 subpixels, defined in the X-direction, is smaller than an emission wavelength of the active layer. The light source module outputs laser light from each M pixel included in the intensity modulation portion in a direction intersecting both X- and Y-directions.
    Type: Application
    Filed: January 15, 2021
    Publication date: March 30, 2023
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshitaka KUROSAKA, Kazuyoshi HIROSE, Soh UENOYAMA
  • Publication number: 20230035423
    Abstract: This disclosure relates to a spatial light modulator, etc., the spatial light modulator being capable of dynamically controlling the phase distribution of light, and provided with a structure having a smaller pixel arrangement period and suitable for high-speed operation. The spatial light modulator includes a substrate. The substrate has a front surface, a back surface, and through-holes arranged one-dimensionally or two-dimensionally and penetrating between the front surface and the back surface. The spatial light modulator further includes layered structures each covering the inner walls of the through-holes. Each layered structure includes a first electroconductive layer on the inner wall, a dielectric layer on the first electroconductive layer and having optical transparency, and a second electroconductive layer on the dielectric layer and having optical transparency. At least one of the first and second electroconductive layers is electrically isolated for each group including one or more through-holes.
    Type: Application
    Filed: December 23, 2020
    Publication date: February 2, 2023
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuyoshi HIROSE, Yoshitaka KUROSAKA, Soh UENOYAMA
  • Patent number: 11502481
    Abstract: A semiconductor light-emitting module according to the present embodiment includes a plurality of semiconductor light-emitting elements each outputting light of a desired beam projection pattern; and a support substrate holding the plurality of semiconductor light-emitting elements. Each of the plurality of semiconductor light-emitting elements includes a phase modulation layer configured to form a target beam projection pattern in a target beam projection region. The plurality of semiconductor light-emitting elements include first and second semiconductor light-emitting elements that are different in terms of at least any of a beam projection direction, the target beam projection pattern, and a light emission wavelength.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: November 15, 2022
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takahiro Sugiyama, Yuu Takiguchi, Yoshitaka Kurosaka, Kazuyoshi Hirose, Yoshiro Nomoto, Soh Uenoyama
  • Publication number: 20220278505
    Abstract: The present embodiment relates to a single semiconductor light-emitting element including a plurality of light-emitting portions each of which is capable of generating light of a desired beam projection pattern and a method for manufacturing the semiconductor light-emitting element. In the semiconductor light-emitting element, an active layer and a phase modulation layer are formed on a common substrate layer, and the phase modulation layer includes at least a plurality of phase modulation regions arranged along the common substrate layer. The plurality of phase modulation regions are obtained by separating the phase modulation layer into a plurality of places after manufacturing the phase modulation layer, and as a result, the semiconductor light-emitting element provided with a plurality of light-emitting portions that have been accurately aligned can be obtained through a simple manufacturing process as compared with the related art.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 1, 2022
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Takahiro SUGIYAMA, Yuu TAKIGUCHI, Yoshitaka KUROSAKA, Kazuyoshi HIROSE, Yoshiro NOMOTO, Soh UENOYAMA
  • Patent number: 11394174
    Abstract: The present embodiment relates to a semiconductor light-emitting element or the like including a structure for suppressing deterioration in the quality of an optical image caused by an electrode blocking a part of light outputted from a phase modulation layer. The semiconductor light-emitting element includes a phase modulation layer having a basic layer and a plurality of modified refractive index regions, and the phase modulation layer includes a first region at least partially overlapping the electrode along a lamination direction and a second region other than the first region. Among the plurality of modified refractive index regions, only one or more modified refractive index regions in the second region are disposed so as to contribute to formation of an optical image.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: July 19, 2022
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yuu Takiguchi, Kazuyoshi Hirose, Yoshitaka Kurosaka, Takahiro Sugiyama, Yoshiro Nomoto, Soh Uenoyama
  • Patent number: 11374383
    Abstract: A semiconductor light emitting element that can form a useful beam pattern is provided. A semiconductor laser element LD includes an active layer 4, a pair of cladding layers 2 and 7 between which the active layer 4 is interposed, and a phase modulation layer 6 optically coupled to the active layer 4. The phase modulation layer 6 includes a base layer 6A and different refractive index regions 6B that are different in refractive index from the base layer 6A. The different refractive index regions 6B desirably arranged in the phase modulation layer 6 enable emission of laser light including a dark line with no zero-order light.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: June 28, 2022
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshitaka Kurosaka, Kazuyoshi Hirose, Takahiro Sugiyama
  • Publication number: 20220187636
    Abstract: The present embodiment relates to a variable-phase device including a new device structure that can solve various problems. The variable-phase device includes M pixels (where M is an integer of 2 or more) arrayed one-dimensionally or two-dimensionally, the M pixels each emitting light or modulating light. The array pitch of the M pixels is less than the wavelength of incident light and is constant along a predetermined direction. Each of the M pixels includes N sub-pixels (where N is an integer of 2 or more) each having a structure allowing the phase of outgoing light to vary. With respect to each of the M pixels, N partial light beams outputted from the N sub-pixels are combined into light having a single phase in the far field.
    Type: Application
    Filed: March 27, 2020
    Publication date: June 16, 2022
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Soh UENOYAMA, Yoshitaka KUROSAKA, Kazuyoshi HIROSE
  • Patent number: 11309687
    Abstract: The present embodiment relates to a light-emitting device or the like having a structure capable of reducing one power of ±1st-order light with respect to the other power. The light-emitting device includes a substrate, a light-emitting portion, and a phase modulation layer including a base layer and a plurality of modified refractive index regions. Each of the plurality of modified refractive index regions has a three-dimensional shape defined by a first surface facing the substrate, a second surface positioned on a side opposite to the substrate with respect to the first surface, and a side surface. In the three-dimensional shape, at least one of the first surface, the second surface, and the side surface has a portion inclined with respect to a main surface.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: April 19, 2022
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuyoshi Hirose, Yoshitaka Kurosaka, Yuu Takiguchi, Takahiro Sugiyama
  • Publication number: 20220037849
    Abstract: The light-emitting element of an embodiment outputs a clear optical image while suppressing light output efficiency reduction, and includes a substrate, a light-emitting unit, and a bonding layer. The light-emitting unit has a semiconductor stack, including a phase modulation layer, between first and second electrodes. The phase modulation layer has a base layer and modified refractive index regions, and includes a first region having a size including the second electrode, and a second region. Each gravity center of the second region's modified refractive index region is arranged by an array condition. The light from the stack is a single beam, and regarding a first distance from the substrate to the stack's front surface and a second distance from the substrate to the stack's back surface, a variation amount of the first distance along a direction on the substrate is smaller than a variation amount of the second distance.
    Type: Application
    Filed: December 11, 2019
    Publication date: February 3, 2022
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Akio ITO, Yoshitaka KUROSAKA, Masahiro HITAKA, Kazuyoshi HIROSE, Tadataka EDAMURA
  • Publication number: 20210397128
    Abstract: An image output device of the disclosure facilitates enlargement of a stereoscopic image and includes a spatial light modulator, an image irradiation unit, and an address light irradiation unit. The spatial light modulator includes a main surface, a back surface, and pixels, reflects light emitted to the main surface, and modulates a phase of the light for each pixel. The image irradiation unit irradiates the main surface with light including an optical image. The address light irradiation unit irradiates the back surface with address light including a diffraction grating pattern. Each pixel of the spatial light modulator changes a phase modulation amount according to the intensity of the address light from a back surface. The address light irradiation unit dynamically change a diffraction grating pattern's direction on the back surface. The image irradiation unit irradiates the main surface with the optical image corresponding to the diffraction grating pattern's direction.
    Type: Application
    Filed: June 15, 2021
    Publication date: December 23, 2021
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuyoshi HIROSE, Yoshitaka KUROSAKA, Yuu TAKIGUCHI
  • Publication number: 20210273411
    Abstract: The present embodiment relates to a light-emitting device comprising a reflective metasurface modulating a phase for each of pixels constituting a one- or two-dimensional array. The light-emitting device comprises a surface emitting laser element, a light guide layer, and the metasurface. The metasurface has a light transmissive layer including a dielectric layer, one metal film on one surface thereof, and the other metal film on the other surface thereof. In each of unit regions corresponding to the pixels, the light transmissive layer includes a portion exposed without being covered with the metal film. The width of each unit region and the thickness of the light transmissive layer are smaller than the wavelength of the laser light to the metasurface. The metasurface modulates the phase of the laser light for each unit region. A first light output surface outputs the modulated laser.
    Type: Application
    Filed: May 14, 2019
    Publication date: September 2, 2021
    Applicant: Hamamatsu Photonics K.K.
    Inventors: Soh UENOYAMA, Kazuyoshi HIROSE, Yoshitaka KUROSAKA, Hiroshi TANAKA
  • Patent number: 11088511
    Abstract: In a semiconductor light emitting element provided with an active layer 4, a pair of cladding layers 2, 7 between which the active layer 4 is interposed, and a phase modulation layer 6 optically coupled to the active layer 4, the phase modulation layer 6 includes a base layer 6A and a plurality of different refractive index regions 6B having different refractive indices from the base layer 6A. When an XYZ orthogonal coordinate system having a thickness direction of the phase modulation layer 6 as a Z-axis direction is set and a square lattice of a virtual lattice constant a is set in an XY plane, each of the different refractive index regions 6B is disposed so that a centroid position G thereof is shifted from a lattice point position in a virtual square lattice by a distance r, and the distance r is 0<r?0.3a.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: August 10, 2021
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshitaka Kurosaka, Yuu Takiguchi, Takahiro Sugiyama, Kazuyoshi Hirose, Yoshiro Nomoto