Patents by Inventor Yoshito Ishii

Yoshito Ishii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240123934
    Abstract: An airbag device includes an airbag that is supplied with gas generated by an inflator during a vehicle collision and that inflates and deploys from a rear side of a vehicle seat toward a front side via an upper side. In an inflated and deployed state, the airbag includes a pair of front-rear chambers extending in a seat front-rear direction via left and right sides of a head of a passenger, an airbag body that is in communication with the pair of front-rear chambers and that is disposed at a front side of the passenger between the pair of front-rear chambers, and a pair of rear tethers including one-end portions attached to the airbag body and other-end portions attached to a seatback of the vehicle seat. At least a rear tether on a side door side is configured so as to be releasable after a collision of the vehicle.
    Type: Application
    Filed: September 13, 2023
    Publication date: April 18, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsuyoshi OHNO, Takeshi YAMAMOTO, Toshiki IWAMA, Yoshito KUSUHARA, Tsutomu ISHII
  • Publication number: 20240123936
    Abstract: An airbag device has an airbag. The airbag has a front-rear chamber and an airbag main body. The front-rear chamber has a left and right pair of front-rear extending portions that pass by respective left and right sides of a head of a passenger and inflate and deploy toward the seat front side, and a connecting portion connecting front end portions of the pair of front-rear extending portions in a seat left-right direction. Gas is supplied to the airbag main body via a communication hole positioned at a seat rear side of the connecting portion of the front-rear chamber that has inflated and deployed. Owing to inflation and deployment of the front-rear chamber, the airbag main body passes through a gap between a ceiling of the vehicle and the head from the seat rear side toward the seat front side, and thereafter, inflates and deploys toward the seat rear side.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 18, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsuyoshi OHNO, Takeshi YAMAMOTO, Toshiki IWAMA, Yoshito KUSUHARA, Tsutomu ISHII
  • Publication number: 20240123933
    Abstract: An airbag device includes an airbag that is supplied with gas during a vehicle collision, and that inflates and deploys from a rear side of a vehicle seat toward a front side via an upper side thereof. In an inflated and deployed state the airbag includes a pair of front-rear chambers extending in a front-rear direction via left and right sides of the head of a passenger, and an airbag body in communication with the pair of front-rear chambers, that is disposed at a front side of the passenger between the pair of front-rear chambers, and that is compression deformed in a state supported by the pair of front-rear chambers during restraint of the passenger. The airbag is configured such that entry of at least the head of the passenger into gaps between the front-rear chambers and the airbag body is suppressed during a latter half of restraining the passenger.
    Type: Application
    Filed: September 13, 2023
    Publication date: April 18, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsuyoshi OHNO, Takeshi Yamamoto, Toshiki Iwama, Yoshito Kusuhara, Tsutomu Ishii
  • Publication number: 20240123932
    Abstract: An airbag device includes an airbag that is supplied with gas generated by an inflator during a vehicle collision, and that inflates and deploys from a rear side of a vehicle seat toward a front side via an upper side. In an inflated and deployed state, the airbag includes a pair of front-rear chambers extending in a seat front-rear direction via left and right sides of a head of a passenger, an airbag body that is communicated with the pair of front-rear chambers and that is disposed at a front side of the passenger between the pair of front-rear chambers, and an auxiliary chamber into which gas inside the airbag body flows indirectly at least during restraint of the passenger by the airbag body.
    Type: Application
    Filed: September 6, 2023
    Publication date: April 18, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsuyoshi OHNO, Takeshi Yamamoto, Toshiki Iwama, Yoshito Kusuhara, Tsutomu Ishii
  • Publication number: 20240123935
    Abstract: An airbag device including an airbag that inflates and deploys from a seat rear side of a vehicle seat toward a seat front side via a seat upper side. In an inflated and deployed state, the airbag includes a pair of front-rear chambers extending in a front-rear direction via left and right sides of a head of a passenger, an airbag body that is in communication with the pair of front-rear chambers and that is disposed at a seat front side of the passenger between the pair of front-rear chambers, and a pair of rear tethers including one-end portions attached to the airbag body and other-end portions attached to a seatback. At a time of restraint of the passenger, the airbag body is pulled by the rear tethers obliquely rearward and downward such that the front-rear chambers press shoulders of the passenger from a seat upper side.
    Type: Application
    Filed: September 13, 2023
    Publication date: April 18, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsuyoshi OHNO, Takeshi YAMAMOTO, Toshiki IWAMA, Yoshito KUSUHARA, Tsutomu ISHII
  • Publication number: 20240123940
    Abstract: An airbag device has an airbag. The airbag has a front-rear chamber and an airbag main body. The front-rear chamber has a left and right pair of front-rear extending portions that pass by respective left and right sides of a head of a passenger and inflate and deploy toward the seat front side, and a connecting portion connecting front end portions of the pair of front-rear extending portions in a seat left-right direction. The airbag main body inflates and deploys toward a side of the passenger at a seat rear side of the connecting portion, later than the front-rear chamber. The airbag main body has a downward-force applying portion that applies force directed toward a seat lower side to the airbag at a time when the passenger is restrained by the airbag.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 18, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsuyoshi OHNO, Takeshi YAMAMOTO, Toshiki IWAMA, Yoshito KUSUHARA, Tsutomu ISHII
  • Publication number: 20240123937
    Abstract: An airbag device has an airbag. The airbag has a front-rear chamber and an airbag main body. The front-rear chamber has a left and right pair of front-rear extending portions that pass by respective left and right sides of a head of a passenger seated in a vehicle seat and inflate and deploy toward the seat front side, and a connecting portion connecting front end portions of the pair of front-rear extending portions in a seat left-right direction. The airbag main body inflates and deploys toward a side of the passenger at a seat rear side of the connecting portion, later than the front-rear chamber. At a time when the passenger is restrained, the airbag main body is compressed in a seat front-rear direction while stretching the front-rear chamber in the seat front-rear direction.
    Type: Application
    Filed: October 11, 2023
    Publication date: April 18, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsuyoshi OHNO, Takeshi YAMAMOTO, Toshiki IWAMA, Yoshito KUSUHARA, Tsutomu ISHII
  • Patent number: 10854871
    Abstract: An anode material for a lithium ion secondary battery that includes a carbon material having an average interlayer spacing d002 as determined by X-ray diffraction of from 0.335 nm to 0.340 nm, a volume average particle diameter (50% D) of from 1 ?m to 40 ?m, a maximum particle diameter Dmax of 74 ?m or less, and at least two exothermic peaks within a temperature range of from 300° C. to 1000° C. in a differential thermal analysis in an air stream.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: December 1, 2020
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Nobushige Nakamura, Yoshito Ishii, Hidetoshi Honbou, Keiji Okabe, Yuriko Ida
  • Patent number: 10651458
    Abstract: A negative electrode for a lithium secondary battery includes a layer of a mixture containing graphite powder and an organic binder on a current collector, wherein a diffraction intensity ratio (002)/(110) measured by X-ray diffractometry of the layer of a mixture is 500 or less. A lithium secondary battery includes the negative electrode for a lithium secondary battery, and a positive electrode that includes a lithium compound. This results in less deterioration in the rapid charge and discharge characteristics and the cycle characteristics when the density of the negative electrode is made higher, thereby providing a high capacity lithium secondary battery having the improved energy density per unit volume of the secondary battery.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: May 12, 2020
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Yoshito Ishii, Souichirou Suda, Tatsuya Nishida
  • Patent number: 9508980
    Abstract: A method for forming a negative electrode for a lithium secondary battery, includes providing a paste comprising graphite particulates comprise assembled or bound graphite particles in each of which a plurality of flat-shaped particles are assembled or bound together so that the planes of orientation are not parallel to one another, and the mixture including 3 to 10 parts by weight of the organic binder per 100 parts by weight of the graphite particulates, a binder and a solvent, coating the paste on a current collector, drying the paste coated on the current collector to form a mixture of the graphite particulates and the binder, and integrating the mixture with the current collector by pressing to provide a density of the mixture of graphite particulates and organic binder of 1.5 to 1.9 g/cm3.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: November 29, 2016
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Yoshito Ishii, Tatsuya Nishida, Atsushi Fujita, Kazuo Yamada
  • Patent number: 9450246
    Abstract: Disclosed are carbon particles for a negative electrode of a lithium ion secondary battery, the carbon particles having a pore volume of pores having a size of 2×10 to 2×104 ?, of 0.1 ml/g or less with respect to the mass of the carbon particles; having an interlayer distance d(002) of a graphite crystal as determined by an X-ray diffraction analysis, of 3.38 ? or less; having a crystallite size Lc in the C-axis direction of 500 ? or more; and having a degree of circularity of the particle cross-section in the range of 0.6 to 0.9. Therefore, the carbon particles for the negative electrode of the lithium ion secondary battery enables to have high capacity and have superior rapid charge characteristics, a negative electrode for a lithium ion secondary battery using the carbon particles, and a lithium ion secondary battery can be provided.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: September 20, 2016
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Teppei Takahashi, Yoshito Ishii, Keiji Okabe, Yuriko Ida, Nobushige Nakamura
  • Publication number: 20160141609
    Abstract: An aluminum silicate complex that comprises an aluminum silicate and carbon that is disposed on a surface of the aluminum silicate.
    Type: Application
    Filed: June 12, 2014
    Publication date: May 19, 2016
    Applicant: Hitachi Chemical Company, Ltd.
    Inventors: Hiroki MIKUNI, Katsunori KODATO, Yoshito ISHII
  • Publication number: 20140349173
    Abstract: A method for forming a negative electrode for a lithium secondary battery, includes providing a paste comprising graphite particulates comprise assembled or bound graphite particles in each of which a plurality of flat-shaped particles are assembled or bound together so that the planes of orientation are not parallel to one another, and the mixture including 3 to 10 parts by weight of the organic binder per 100 parts by weight of the graphite particulates, a binder and a solvent, coating the paste on a current collector, drying the paste coated on the current collector to form a mixture of the graphite particulates and the binder, and integrating the mixture with the current collector by pressing to provide a density of the mixture of graphite particulates and organic binder of 1.5 to 1.9 g/cm3.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Inventors: Yoshito Ishii, Tatsuya Nishida, Atsushi Fujita, Kazuo Yamada
  • Patent number: 8802297
    Abstract: A method for forming a negative electrode for a lithium secondary battery, includes providing a paste comprising graphite particulates comprise assembled or bound graphite particles in each of which a plurality of flat-shaped particles are assembled or bound together so that the planes of orientation are not parallel to one another, and the mixture including 3 to 10 parts by weight of the organic binder per 100 parts by weight of the graphite particulates, a binder and a solvent, coating the paste on a current collector, drying the paste coated on the current collector to form a mixture of the graphite particulates and the binder, and integrating the mixture with the current collector by pressing to provide a density of the mixture of graphite particulates and organic binder of 1.5 to 1.9 g/cm3.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: August 12, 2014
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Yoshito Ishii, Tatsuya Nishida, Atsushi Fujita, Kazuo Yamada
  • Publication number: 20140057159
    Abstract: A method for forming a negative electrode for a lithium secondary battery, includes providing a paste comprising graphite particulates comprise assembled or bound graphite particles in each of which a plurality of flat-shaped particles are assembled or bound together so that the planes of orientation are not parallel to one another, and the mixture including 3 to 10 parts by weight of the organic binder per 100 parts by weight of the graphite particulates, a binder and a solvent, coating the paste on a current collector, drying the paste coated on the current collector to form a mixture of the graphite particulates and the binder, and integrating the mixture with the current collector by pressing to provide a density of the mixture of graphite particulates and organic binder of 1.5 to 1.9 g/cm3.
    Type: Application
    Filed: November 6, 2013
    Publication date: February 27, 2014
    Applicant: Hitachi Chemical Company, Ltd.
    Inventors: Yoshito Ishii, Tatsuya Nishida, Atsushi Fujita, Kazuo Yamada
  • Patent number: 8580437
    Abstract: A method for forming a negative electrode for a lithium secondary battery, includes providing a paste comprising graphite particulates comprise assembled or bound graphite particles in each of which a plurality of flat-shaped particles are assembled or bound together so that the planes of orientation are not parallel to one another, and the mixture including 3 to 10 parts by weight of the organic binder per 100 parts by weight of the graphite particulates, a binder and a solvent, coating the paste on a current collector, drying the paste coated on the current collector to form a mixture of the graphite particulates and the binder, and integrating the mixture with the current collector by pressing to provide a density of the mixture of graphite particulates and organic binder of 1.5 to 1.9 g/cm3.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: November 12, 2013
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Yoshito Ishii, Tatsuya Nishida, Atsushi Fujita, Kazuo Yamada
  • Publication number: 20130143127
    Abstract: An anode material for a lithium ion secondary battery that includes a carbon material having an average interlayer spacing d002 as determined by X-ray diffraction of from 0.335 nm to 0.340 nm, a volume average particle diameter (50% D) of from 1 ?m to 40 ?m, a maximum particle diameter Dmax of 74 ?m or less, and at least two exothermic peaks within a temperature range of from 300° C. to 1000° C. in a differential thermal analysis in an air stream.
    Type: Application
    Filed: July 29, 2011
    Publication date: June 6, 2013
    Applicant: Hitachi Chemical Company, Ltd.
    Inventors: Nobushige Nakamura, Yoshito Ishii, Hidetoshi Honbou, Keiji Okabe, Yuriko Ida
  • Publication number: 20120328954
    Abstract: Disclosed are: a negative electrode material for a lithium ion secondary battery, which enables the production of one having a smaller irreversible capacity. That is a negative electrode material for a lithium ion secondary battery having a carbon layer formed on a surface of a carbon material as a core, wherein (A) a carbon (002) plane has a plane distance of 3.40 to 3.70 ? (by an XRD measurement), (B) a content ratio of the carbon layer to the carbon material is 0.005 to 0.1, (C) a specific surface area is 0.5 to 10.0 m2/g (by a nitrogen adsorption measurement at 77 K), and (D) a specific surface area Y (by carbon dioxide adsorption at 273 K) and a content ratio X of the carbon layer to the carbon material meet the requirement represented by a formula (I): 0<Y<AX+2.5 [A=100].
    Type: Application
    Filed: February 23, 2011
    Publication date: December 27, 2012
    Inventors: Keiji Okabe, Yoshito Ishii, Yuriko Ida
  • Publication number: 20120219863
    Abstract: Disclosed are carbon particles for a negative electrode of a lithium ion secondary battery, the carbon particles having a pore volume of pores having a size of 2×10 to 2×104 ?, of 0.1 ml/g or less with respect to the mass of the carbon particles; having an interlayer distance d(002) of a graphite crystal as determined by an X-ray diffraction analysis, of 3.38 ? or less; having a crystallite size Lc in the C-axis direction of 500 ? or more; and having a degree of circularity of the particle cross-section in the range of 0.6 to 0.9. Therefore, the carbon particles for the negative electrode of the lithium ion secondary battery enables to have high capacity and have superior rapid charge characteristics, a negative electrode for a lithium ion secondary battery using the carbon particles, and a lithium ion secondary battery can be provided.
    Type: Application
    Filed: October 20, 2010
    Publication date: August 30, 2012
    Inventors: Teppei Takahashi, Yoshito Ishii, Keiji Okabe, Yuriko Ida, Nobushige Nakamura
  • Publication number: 20120189905
    Abstract: A method for forming a negative electrode for a lithium secondary battery, includes providing a paste comprising graphite particulates comprise assembled or bound graphite particles in each of which a plurality of flat-shaped particles are assembled or bound together so that the planes of orientation are not parallel to one another, and the mixture including 3 to 10 parts by weight of the organic binder per 100 parts by weight of the graphite particulates, a binder and a solvent, coating the paste on a current collector, drying the paste coated on the current collector to form a mixture of the graphite particulates and the binder, and integrating the mixture with the current collector by pressing to provide a density of the mixture of graphite particulates and organic binder of 1.5 to 1.9 g/cm3.
    Type: Application
    Filed: January 27, 2012
    Publication date: July 26, 2012
    Inventors: Yoshito ISHII, Tatsuya NISHIDA, Atsushi FUJITA, Kazuo YAMADA