Patents by Inventor Yoshiyuki Hiramoto

Yoshiyuki Hiramoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8915100
    Abstract: An optical fiber end processing method includes the steps of: an optical fiber fixing step of fixing two parts of the optical fiber; a first heating step of heating a tip end side part of the optical fiber between two fixed parts fixed in the optical fiber fixing step, and melting the optical fiber of the tip end side heating part; a second heating step of heating a part on a base end side of the optical fiber between the fixed parts away from the tip end side heating part in a state that two parts of the optical fiber are fixed, and making the holes of the optical fiber disappear; and a removing step of removing the tip end side heating part after the second heating step.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: December 23, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventors: Masao Tachikura, Yoshiyuki Hiramoto
  • Patent number: 8764317
    Abstract: An optical fiber end processing method includes fixing two portions of an optical fiber, heating and fusing the optical fiber between the two fixed portions, to form a first heat fusion region, heating and fusing the optical fiber fixed between the two fixed portions unit while fixing the two fixed portions, moving a heat fusion unit from a side of the first heat fusion region toward a base end side of the optical fiber, and pushing a heat fusion portion of the optical fiber in a direction of shortening a length of the heat fusion portion, to form a second heat fusion region continuous to the first heat fusion region and in which the air holes of the optical fiber disappear; and removing the first heat fusion region by cutting the optical fiber within the second heat fusion region after the second heat fusion forming.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: July 1, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventors: Masao Tachikura, Noribumi Shiina, Tatsuo Teraoka, Yoshiyuki Hiramoto, Mitsumasa Zobuchi, Fumi Miyata
  • Publication number: 20120170901
    Abstract: An optical fiber end processing method includes fixing two portions of an optical fiber, heating and fusing the optical fiber between the two fixed portions, to form a first heat fusion region, heating and fusing the optical fiber fixed between the two fixed portions unit while fixing the two fixed portions, moving a heat fusion unit from a side of the first heat fusion region toward a base end side of the optical fiber, and pushing a heat fusion portion of the optical fiber in a direction of shortening a length of the heat fusion portion, to form a second heat fusion region continuous to the first heat fusion region and in which the air holes of the optical fiber disappear; and removing the first heat fusion region by cutting the optical fiber within the second heat fusion region after the second heat fusion forming.
    Type: Application
    Filed: December 14, 2011
    Publication date: July 5, 2012
    Applicant: Hitachi Cable, Ltd.
    Inventors: Masao Tachikura, Noribumi Shiina, Tatsuo Teraoka, Yoshiyuki Hiramoto, Mitsumasa Zobuchi, Fumi Miyata
  • Publication number: 20120073330
    Abstract: An optical fiber end processing method includes the steps of: an optical fiber fixing step of fixing two parts of the optical fiber; a first heating step of heating a tip end side part of the optical fiber between two fixed parts fixed in the optical fiber fixing step, and melting the optical fiber of the tip end side heating part; a second heating step of heating a part on a base end side of the optical fiber between the fixed parts away from the tip end side heating part in a state that two parts of the optical fiber are fixed, and making the holes of the optical fiber disappear; and a removing step of removing the tip end side heating part after the second heating step.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 29, 2012
    Applicant: Hitachi Cable, Ltd.
    Inventors: Masao TACHIKURA, Yoshiyuki Hiramoto
  • Patent number: 5949928
    Abstract: An optical filter is provided to be on a side of the output ports relative to a branch port of the first stage in an optical branch apparatus. The optical filter transmits a signal light and reflects a monitor light, so that signal lights are obtained at output ports, and the monitor light is returned to an optical transmitter to detect an abnormal state of an optical fiber transmission line.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: September 7, 1999
    Assignee: Hitachi Cable, Ltd.
    Inventors: Takayuki Kadoi, Yoshiyuki Hiramoto, Hiromasa Nemoto
  • Patent number: 5357339
    Abstract: Each fiber-optic gyroscope unit is shaped like a tetragonal cone. A square plate (51) is used as a base which holds a light source module (52), a light receiving unit (detector) (53) and an optical fiber coil (54). Directional couplers (56a), (56b) are also mounted on the base (51). A phase modulator (55) which includes a piezoelectric element is disposed inside the optical fiber coil (54). A signal processing circuit board (58) which has pedestals (59) stands on the base (51) such that it positions above the optical fiber coil (54). A polarizer (510) is wound around the optical fiber coil (54). A reinforcement member (511) is also provided. All these components are so arranged as not to extend out of the tetragonal cone (OABCO*) which defines its own unit region. Three identical fiber-optic gyroscope units are combined by connecting members (512, 513, 514) to form a single fiber-optic gyroscope to detect rotational angular velocities about three orthogonal axes.
    Type: Grant
    Filed: June 24, 1992
    Date of Patent: October 18, 1994
    Assignee: Hitachi Cable Limited
    Inventors: Tatsuo Teraoka, Yoshiyuki Hiramoto, Hirokazu Shiga, Shigeo Toya
  • Patent number: 5318215
    Abstract: A method of manufacturing a metal pipe clad cable having a fiber with an excess length housed therein, comprises the steps of preparing a metal pipe clad cable comprising a metal pipe and a fiber housed in the metal pipe, and passing said metal pipe clad cable through a plurality of sets of bending rolls. The metal pipe is repeatedly bent when passing through the plural sets of said bending rolls so as to generate a plastic deformation within the metal pipe and, thus, to impart an excess length to the fiber within the metal pipe.
    Type: Grant
    Filed: February 23, 1993
    Date of Patent: June 7, 1994
    Assignees: Hitachi Cable Ltd., NKK Corporation
    Inventors: Shigeo Toya, Tatsuo Teraoka, Yoshiyuki Hiramoto, Yasunori Yoshie
  • Patent number: 5142763
    Abstract: Metal pipes containing optical fibers are connected to each other directly or indirectly by use of a sleeve. In case of using the sleeve, the sleeve is connected at one end to one of the metal pipes, after the optical fibers are connected. Then, the sleeve is elongated by a predetermined length, so that the sleeve is connected at the other end to the other metal pipe. Consequently, no tensile stress resides in the connected optical fibers in the connected structure. When the metal pipes are connected directly to each other, one or both of the metal pipes are elongated, after the optical fibers are connected. Then, the metal pipes are connected by use of the elongated portions. Consequently, the same result is obtained as using the sleeve.
    Type: Grant
    Filed: March 31, 1991
    Date of Patent: September 1, 1992
    Assignees: Hitachi Cable, Ltd., NKK Corporation
    Inventors: Shigeo Toya, Yoshiyuki Hiramoto, Koji Sasaki, Koichi Abe, Tatsuo Teraoka, Hirokazu Shiga, Yasunori Yoshie
  • Patent number: 5076657
    Abstract: Metal pipes containing optical fibers are connected to each other directly or indirectly by use of a sleeve. In case of using the sleeve, the sleeve is connected at one end to one of the metal pipes, after the optical fibers are connected. Then, the sleeve is elongated by a predetermined length, so that the sleeve is connected at the other end to the other metal pipe. Consequently, no tensile stress resides in the connected optical fibers in the connected structure. When the metal pipes are connected directly to each other, one or both of the metal pipes are elongated, after the optical fibers are connected. Then, the metal pipes are connected by used of the elongated portions. Consequently, the same result is obtained as using the sleeve.
    Type: Grant
    Filed: September 25, 1990
    Date of Patent: December 31, 1991
    Assignees: Hitachi Cable Ltd., NKK Corporation
    Inventors: Shigeo Toya, Yoshiyuki Hiramoto, Koji Sasaki, Koichi Abe, Tatsuo Teraoka, Hirokazu Shiga, Yasunori Yoshie