Patents by Inventor Yougandh Chitre

Yougandh Chitre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11786731
    Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: October 17, 2023
    Assignee: Nevro Corp.
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20230181904
    Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Application
    Filed: February 3, 2023
    Publication date: June 15, 2023
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20220305266
    Abstract: Selective high-frequency spinal cord modulation for inhibiting pain with reduced side effects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal cord region to address low back pain without creating unwanted sensory and/or motor side effects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Application
    Filed: June 8, 2022
    Publication date: September 29, 2022
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20220273950
    Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Application
    Filed: May 19, 2022
    Publication date: September 1, 2022
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Patent number: 11382531
    Abstract: Systems and methods for positioning implanted devices in a patient are disclosed. A method in accordance with a particular embodiment includes, for each of a plurality of patients, receiving a target location from which to deliver a modulation signal to the patient's spinal cord. The method further includes implanting a signal delivery device within a vertebral foramen of each patient, and positioning an electrical contact carried by the signal delivery device to be within ±5 mm. of the target location, without the use of fluoroscopy. The method can still further include, for each of the plurality of patients, activating the electrical contact to modulate neural activity at the spinal cord. In further particular embodiments, RF signals, ultrasound, magnetic fields, and/or other techniques are used to locate the signal delivery device.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: July 12, 2022
    Assignee: Nevro Corp.
    Inventors: James R. Thacker, Jon Parker, Yougandh Chitre
  • Patent number: 11229793
    Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: January 25, 2022
    Assignee: Nevro Corp.
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20210268290
    Abstract: Molded headers, implantable signal generators having molded headers, and associated systems and methods are disclosed herein. An implantable signal generator in accordance with a particular embodiment includes a can having a shell and a battery positioned at least partially within the shell. An output terminal can be operably coupled to the battery and positioned to provide electrical power to a signal delivery device. A pre-molded header having a plurality of openings can be coupled to the can, and the output terminal can be positioned at least partially within an individual opening.
    Type: Application
    Filed: February 11, 2021
    Publication date: September 2, 2021
    Inventors: Vivek Sharma, Jon Parker, Yougandh Chitre, Andre B. Walker
  • Patent number: 11103280
    Abstract: Insertion devices and associated systems and methods for the percutaneous placement of patient leads are disclosed herein. A system in accordance with a particular embodiment includes a cannula having a lumen and a first dilator. The first dilator can be positioned within the lumen and the first dilator and the cannula can be used to create a percutaneous entry point. An additional dilator can be positioned over the first dilator and advanced into the percutaneous entry point to expand the percutaneous entry point. A final dilator can be inserted into the patient and two leads can be advanced into the patient through the final dilator.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: August 31, 2021
    Assignee: Nevro Corp.
    Inventors: Yougandh Chitre, Andre B. Walker, Vivek Sharma
  • Publication number: 20210247425
    Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Application
    Filed: January 26, 2021
    Publication date: August 12, 2021
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20210236820
    Abstract: Communication and charging assemblies for medical devices are disclosed herein. A communication and charging assembly in accordance with a particular embodiment includes a support element, with a communication antenna and a charging coil coupled to the support element. The charging coil can include wire loops having a plurality of wires and the support element can include a mounting surface shaped to match the charging coil and the communication antenna. In one embodiment, the communication and charging assembly are mounted in a header of an implantable signal generator.
    Type: Application
    Filed: January 14, 2021
    Publication date: August 5, 2021
    Inventors: Jon Parker, Yougandh Chitre, Andre B. Walker
  • Patent number: 10946204
    Abstract: Molded headers, implantable signal generators having molded headers, and associated systems and methods are disclosed herein. An implantable signal generator in accordance with a particular embodiment includes a can having a shell and a battery positioned at least partially within the shell. An output terminal can be operably coupled to the battery and positioned to provide electrical power to a signal delivery device. A pre-molded header having a plurality of openings can be coupled to the can, and the output terminal can be positioned at least partially within an individual opening.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: March 16, 2021
    Assignee: Nevro Corp.
    Inventors: Vivek Sharma, Jon Parker, Yougandh Chitre, Andre B. Walker
  • Patent number: 10918866
    Abstract: Communication and charging assemblies for medical devices are disclosed herein. A communication and charging assembly in accordance with a particular embodiment includes a support element, with a communication antenna and a charging coil coupled to the support element. The charging coil can include wire loops having a plurality of wires and the support element can include a mounting surface shaped to match the charging coil and the communication antenna. In one embodiment, the communication and charging assembly are mounted in a header of an implantable signal generator.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: February 16, 2021
    Assignee: Nevro Corp.
    Inventors: Jon Parker, Yougandh Chitre, Andre B. Walker
  • Publication number: 20200222698
    Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Application
    Filed: September 25, 2019
    Publication date: July 16, 2020
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Patent number: 10603494
    Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: March 31, 2020
    Assignee: Nevro Corp.
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20200016405
    Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Application
    Filed: September 25, 2019
    Publication date: January 16, 2020
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20200016406
    Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Application
    Filed: September 25, 2019
    Publication date: January 16, 2020
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20200009388
    Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Application
    Filed: August 14, 2019
    Publication date: January 9, 2020
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20200009387
    Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Application
    Filed: August 9, 2019
    Publication date: January 9, 2020
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Patent number: 10493282
    Abstract: Therapy systems for treating a patient are disclosed. Representative therapy systems include an implantable pulse generator, a signal delivery device electrically coupled to the pulse generator, and a remote control in electrical communication with the implantable pulse generator. The pulse generator can have a computer-readable medium containing instructions for performing a process that comprises collecting the patient status and stimulation parameter; analyzing the collected patient status and stimulation parameter; and establishing a preference baseline containing a preferred stimulation parameter corresponding to a particular patient status.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: December 3, 2019
    Assignee: Nevro Corp.
    Inventors: Anthony V. Caparso, Jon Parker, Andre B. Walker, Yougandh Chitre
  • Patent number: 10471258
    Abstract: Selective high-frequency spinal cord modulation for inhibiting pain with reduced side effects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal cord region to address low back pain without creating unwanted sensory and/or motor side effects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: November 12, 2019
    Assignee: Nevro Corp.
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker