Patents by Inventor Youhei Morimoto

Youhei Morimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9365202
    Abstract: When a request of a warming-up of a transmission is generated, a hybrid ECU sets a target input rotational speed of the transmission where a heat loss quantity of a MG becomes maximum, based on a request driving force of a vehicle. In this case, the heat loss quantity is a quantity of a heat loss causing an increasing of a temperature of an ATF in the MG. Thus, the hybrid ECU sets the target input rotational speed where the heat loss quantity becomes maximum and controls the transmission and the MG to output power that meets the request driving force of the vehicle. Since the hybrid ECU controls a torque of the MG, a torque of the engine, and a transmission ratio of the transmission to achieve the target input rotational speed, the hybrid ECU controls the MG, the engine, and the transmission in a condition that the heat loss quantity becomes maximum.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: June 14, 2016
    Assignee: DENSO CORPORATION
    Inventors: Masaki Nishiyama, Youhei Morimoto, Yutaro Itoh
  • Patent number: 9327609
    Abstract: A hybrid vehicle controller controls a start or a stop of an engine according to a heating requirement or an engine-warming requirement. When at least one of the heating requirement and the engine-warming requirement is generated and a state of charge (SOC) of a main battery is higher than a specified threshold, the controller performs an SOC-fall-control to drop an SOC of a main battery. When the SOC of the main battery falls to a specified value, the engine is restarted. Since the engine can be started in a state where the SOC is lower enough than the upper limit by performing the SOC-fall-control, the engine output power can be converted into the heat for heating the passenger compartment or warming-up the engine.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: May 3, 2016
    Assignee: DENSO CORPORATION
    Inventors: Yutaro Ito, Noriaki Ikemoto, Tsuyoshi Okamoto, Youhei Morimoto
  • Patent number: 9193352
    Abstract: An engine shaft of an engine, rotatable shafts of motor generators and a drive force output shaft are interconnected with each other through a drive force transmission arrangement. An ECU computes a torque command value of each of the motor generators through use of an equation of torque equilibrium, which corresponds to the drive force transmission arrangement, based on an engine shaft demand motor generator torque and an output shaft demand motor generator torque.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: November 24, 2015
    Assignee: DENSO CORPORATION
    Inventor: Youhei Morimoto
  • Publication number: 20150291051
    Abstract: The vehicle control system includes an engine, a battery, a motor generator that generates driving power and generates electric power to charge the battery, a power conversion device that generates driving power to the motor generator and charges the battery, and a control device that controls the engine and the power conversion device. The control device controls the engine and the power conversion device and the remaining capacity of the battery is equal to a target value when the remaining capacity of the battery is equal to or less than the lower threshold. The control device reduces the target value of the remaining value of the battery as compared with a case where temperature of the battery is equal to or more than a threshold value when the temperature of the battery is less than the threshold value.
    Type: Application
    Filed: April 8, 2015
    Publication date: October 15, 2015
    Inventor: Youhei MORIMOTO
  • Publication number: 20150251650
    Abstract: When a request of a warming-up of a transmission is generated, a hybrid ECU sets a target input rotational speed of the transmission where a heat loss quantity of a MG becomes maximum, based on a request driving force of a vehicle. In this case, the heat loss quantity is a quantity of a heat loss causing an increasing of a temperature of an ATF in the MG. Thus, the hybrid ECU sets the target input rotational speed where the heat loss quantity becomes maximum and controls the transmission and the MG to output power that meets the request driving force of the vehicle. Since the hybrid ECU controls a torque of the MG, a torque of the engine, and a transmission ratio of the transmission to achieve the target input rotational speed, the hybrid ECU controls the MG, the engine, and the transmission in a condition that the heat loss quantity becomes maximum.
    Type: Application
    Filed: February 27, 2015
    Publication date: September 10, 2015
    Inventors: Masaki NISHIYAMA, Youhei MORIMOTO, Yutaro ITOH
  • Patent number: 9096223
    Abstract: A control device of a hybrid vehicle minimizes fuel consumption by an internal combustion engine while controlling, for a preset period that substantially corresponds to an update cycle of an instructed fuel consumption change rate, an electrical charge-discharge energy balance of a battery to have a predetermined value, (i) by setting, in a predetermined update cycle, the fuel consumption change rate based on travel pattern information and a target electrical charge-discharge balance and (ii) by setting an engine output power increase/decrease amount based on the instructed fuel consumption change rate and the target drive power.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: August 4, 2015
    Assignee: DENSO CORPORATION
    Inventors: Youhei Morimoto, Yutaro Itoh
  • Publication number: 20150104687
    Abstract: A battery warming-up system includes a main battery, an electric heating portion, and a control device. The main battery is mounted to a vehicle to supply an electric power to drive the vehicle, and is warmed by a heat generation of an inner resistance of the main battery according to an input and output of the electric power. The electric heating portion heats a compartment of the vehicle by using the electric power supplied from the main battery. The control device controls a temperature of the main battery by controlling a power supply from the main battery to the electric heating portion. The output of the main battery is increased by increasing the power supply from the main battery to the electric heating portion, and the main battery can be suitably warmed. Therefore, since a power loss due to a decrease of the inner resistance of the main battery is improved or the battery output becomes sufficient, the driving power of the vehicle can be properly ensured.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: Youhei MORIMOTO, Noriaki IKEMOTO, Tsuyoshi OKAMOTO, Yuutarou ITOU
  • Publication number: 20150105957
    Abstract: A vehicle includes an engine, a first MG, a second MG, a main battery which can be charged and discharged, and a heating device. The heating device includes an exhaust heater which uses an exhaust heat of the engine, and a heat pump system which uses an electric power of the main battery. A hybrid control device determines a start timing of the heating device, based on a coolant temperature and a SOC. Specifically, the start timing of the heating device is determined such that a timing that the coolant temperature reaches a target temperature matches a timing that the SOC reaches a target value. After a warming-up operation is completed, an EV travelling of the vehicle can be executed according to the electric power of the main battery charged in the warming-up operation, and a fuel consumption of the engine is improved.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 16, 2015
    Inventors: Tsuyoshi OKAMOTO, Noriaki IKEMOTO, Youhei MORIMOTO, Yuutarou ITOU
  • Publication number: 20150094894
    Abstract: A hybrid vehicle controller controls a start or a stop of an engine according to a heating requirement or an engine-warming requirement. When at least one of the heating requirement and the engine-warming requirement is generated and a state of charge (SOC) of a main battery is higher than a specified threshold, the controller performs an SOC-fall-control to drop an SOC of a main battery. When the SOC of the main battery falls to a specified value, the engine is restarted. Since the engine can be started in a state where the SOC is lower enough than the upper limit by performing the SOC-fall-control, the engine output power can be converted into the heat for heating the passenger compartment or warming-up the engine.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 2, 2015
    Inventors: Yutaro ITO, Noriaki Ikemoto, Tsuyoshi Okamoto, Youhei Morimoto
  • Patent number: 8886377
    Abstract: An engine shaft of an engine, rotatable shafts of two motor generators and a drive force output shaft are interconnected with each other through a drive force transmission arrangement. When a torque of one of the motor generators is limited, an ECU computes a torque correction amount of the other one of the motor generators in a manner that limits at least one of a change in a torque of the engine shaft, a change in a torque of the drive force output shaft and a change in an output of a battery based on a torque limit amount of the one of the motor generators and corrects the torque of the other one of the motor generators with the computed torque correction amount.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: November 11, 2014
    Assignee: Denso Corporation
    Inventor: Youhei Morimoto
  • Publication number: 20140277885
    Abstract: A control device of a hybrid vehicle minimizes fuel consumption by an internal combustion engine while controlling, for a preset period that substantially corresponds to an update cycle of an instructed fuel consumption change rate, an electrical charge-discharge energy balance of a battery to have a predetermined value, (i) by setting, in a predetermined update cycle, the fuel consumption change rate based on travel pattern information and a target electrical charge-discharge balance and (ii) by setting an engine output power increase/decrease amount based on the instructed fuel consumption change rate and the target drive power.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: DENSO CORPORATION
    Inventors: Youhei MORIMOTO, Yutaro ITOH
  • Patent number: 8727924
    Abstract: Planetary ratios of first and second planetary gear mechanisms are set such that all of the following values become equal to each other: a maximum value of a drive force of a first MG, which is generated when a total input-to-output speed ratio is a minimum value upon operation of the first MG as a motor; a maximum value of a drive force of the first MG, which is generated when the total input-to-output speed ratio is a maximum value upon operation of the first MG as the motor; and a maximum value of a drive force of the first MG, which is generated when the total input-to-output speed ratio is in a range from the minimum value to the maximum value upon operation of the first MG as a generator.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: May 20, 2014
    Assignee: Denso Corporation
    Inventors: Youhei Morimoto, Tsuneyuki Egami
  • Patent number: 8688353
    Abstract: An engine control apparatus which may be employed in automotive vehicles. The engine control apparatus is equipped with a controlled variable arithmetic expression which defines correlations between a plurality of combustion parameters and a plurality of controlled variables of actuators for control of an operation of the engine to calculate a combination of command values to be outputted to the actuators for regulating the controlled variables needed to achieve target values of the combustion parameters. When one of the command values is produced outside an allowable operation range of a corresponding one of the actuators, the engine control apparatus corrects or limits the one of the command values to an upper or a lower limit of the allowable operation range, thereby ensuring the stability in bringing engine output characteristics close to desired values.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: April 1, 2014
    Assignee: DENSO Corporation
    Inventors: Youhei Morimoto, Koji Ishizuka, Yoshimitsu Takashima, Kazuhiro Higuchi, Sumitaka Ikeda, Mitsuhiro Nishimura, Masahiro Asano, Satoru Sasaki
  • Patent number: 8649955
    Abstract: An engine control apparatus which may be employed in automotive vehicles. The engine control apparatus is equipped with at least one of a combustion parameter or a controlled variable arithmetic expression. The combustion parameter arithmetic expression defines combustion conditions of the engine needed to achieve required values of engine output-related values such as exhaust emissions. The controlled variable arithmetic expression defines how to operate actuators for an operation of the engine to meet desired combustion conditions of the engine. The use of the combustion parameter or controlled variable arithmetic expression achieves simultaneous agreement of the engine output-related values with required values without mutual interference between combustion parameters associated with the combustion conditions.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: February 11, 2014
    Assignee: Denso Corporation
    Inventors: Sumitaka Ikeda, Koji Ishizuka, Yoshimitsu Takashima, Satoru Sasaki, Kazuhiro Higuchi, Youhei Morimoto, Mitsuhiro Nishimura, Masahiro Asano
  • Patent number: 8401762
    Abstract: An engine control apparatus which may be employed in automotive vehicles. The engine control apparatus is equipped with a controlled variable arithmetic expression which defines correlations between combustion parameters associated with combustion conditions of an engine and controlled variables actuators for an operation of the engine. This eliminates the need for finding relations of optimum values of the controlled variables to the combustion parameters through adaptability tests, which results in a decrease in burden of an adaptability test work and a map-making work on manufacturers. The engine control apparatus also works to learn or optimize the controlled variable arithmetic expression based on actual values of the combustion parameters, thereby avoiding undesirable changes in correlations, as defined by the controlled variable arithmetic expression, due to a change in environmental condition.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: March 19, 2013
    Assignee: Denso Corporation
    Inventors: Masahiro Asano, Yoshimitsu Takashima, Koji Ishizuka, Satoru Sasaki, Kazuhiro Higuchi, Sumitaka Ikeda, Youhei Morimoto, Mitsuhiro Nishimura
  • Patent number: 8370065
    Abstract: An engine control apparatus which may be employed in automotive vehicles. The engine control apparatus is equipped with at least one of a combustion parameter or a controlled variable arithmetic expression. The combustion parameter arithmetic expression defines combustion conditions of the engine needed to achieve required values of engine output-related values such as exhaust emissions. The controlled variable arithmetic expression defines how to operate actuators for an operation of the engine to meet desired combustion conditions of the engine. The use of the combustion parameter or controlled variable arithmetic expression achieves simultaneous agreement of the engine output-related values with required values without mutual interference between combustion parameters associated with the combustion conditions.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: February 5, 2013
    Assignee: Denso Corporation
    Inventors: Yoshimitsu Takashima, Koji Ishizuka, Youhei Morimoto, Mitsuhiro Nishimura, Masahiro Asano, Sumitaka Ikeda, Kazuhiro Higuchi, Satoru Sasaki
  • Patent number: 8370050
    Abstract: The instantaneous interruption detection apparatus includes a noise removing section to remove a noise component from an in-cylinder pressure signal inputted thereto, and output a noise-removed in-cylinder pressure signal, a derivative signal calculating section to calculate a detection signal which is a function of a derivative value of the noise-removed in-pressure signal with respect to the crank angle of an internal combustion engine, an instantaneous interruption determining section configured to make determination that instantaneous interruption of the in-cylinder pressure signal has occurred when the detection signal has exceeded a detection threshold, and a threshold setting section configured to set the detection threshold to such a value that the instantaneous interruption determining section can make the determination in accordance with the noise-removed in-pressure signal which is dull compared to the in-cylinder pressure signal inputted to the noise removing section depending on a gain-frequency
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: February 5, 2013
    Assignee: Denso Corporation
    Inventors: Mitsuhiro Nishimura, Shinya Hoshi, Youhei Morimoto, Kazuhiro Higuchi
  • Publication number: 20120165149
    Abstract: Planetary ratios of first and second planetary gear mechanisms are set such that all of the following values become equal to each other: a maximum value of a drive force of a first MG, which is generated when a total input-to-output speed ratio is a minimum value upon operation of the first MG as a motor; a maximum value of a drive force of the first MG, which is generated when the total input-to-output speed ratio is a maximum value upon operation of the first MG as the motor; and a maximum value of a drive force of the first MG, which is generated when the total input-to-output speed ratio is in a range from the minimum value to the maximum value upon operation of the first MG as a generator.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 28, 2012
    Applicant: DENSO CORPORATION
    Inventors: Youhei MORIMOTO, Tsuneyuki Egami
  • Patent number: 8175789
    Abstract: As a compression-ignition direct-injection engine combustion controller, a program for detecting ignition timing of a main injection Mn (main ignition timing), a program for correcting a command value of main injection execution timing in a direction to the side where a detection value is converged within a predetermined range, a program for determining whether or not the corrected command value is within a predetermined range, and a program for, when it is determined that the command value is not within the range, correcting a command value related to an injection amount of a pilot injection Pt based on whether or not the command value is on a delay side or an advance side of the range.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: May 8, 2012
    Assignee: Denso Corporation
    Inventors: Akikazu Kojima, Hiroshi Haraguchi, Youhei Morimoto, Tokuji Kuronita, Satoru Sasaki
  • Patent number: 7998261
    Abstract: An exhaust gas purifying apparatus for an internal combustion engine includes a collector, a differential pressure sensing device, a differential pressure based estimating device, a partition wall exposure sensing device, and a second regenerating device. The collector captures exhaust particles in exhaust gas. The differential pressure sensing device senses a differential pressure across the collector. The differential pressure based estimating device estimates an accumulation amount of the exhaust particles based on the differential pressure. The partition wall exposure sensing device senses a partition wall exposure state. The second regenerating device forcibly completely combusts the exhaust particles captured in the collector when the partition wall exposure sensing device senses the partition wall exposure state.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: August 16, 2011
    Assignee: Denso Corporation
    Inventors: Youhei Morimoto, Tsukasa Kuboshima, Shigeto Yahata