Patents by Inventor Youichi Ohashi

Youichi Ohashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220149436
    Abstract: A non-aqueous liquid electrolyte secondary battery using negative-electrode active material having Si, Sn and/or Pb, with high charge-capacity, superior characteristics including discharge-capacity retention rate over long is provided. Its non-aqueous liquid electrolyte contains carbonate having unsaturated bond and/or halogen and compounds like LiPF6 and/or LiBF4 (first lithium salt) and lithium salt different from said first one, represented by formula below (second lithium salt). Lil(?mXan) (In the formula, l, m and n represent integers of 1 to 10, 1 to 100 and 1 to 200, respectively. ? represents boron, carbon, nitrogen, oxygen or phosphorus. Xa represents functional group having atom selected from 14th to 17th groups of periodic table at its binding-position to ?. Two or more of Xa may be connected to each other to form a ring structure. However, such a case where ? is boron and Xa is compound represented by (CiH2(i-2)O4)(CjH2(j-2)O4) is omitted (i and j represent integers of 2 or larger.
    Type: Application
    Filed: January 28, 2022
    Publication date: May 12, 2022
    Applicants: MITSUBISHI CHEMICAL CORPORATION, MU IONIC SOLUTIONS CORPORATION
    Inventors: Takashi FUJII, Noriko SHIMA, Youichi OHASHI, Shinichi KINOSHITA
  • Patent number: 11283107
    Abstract: A non-aqueous liquid electrolyte secondary battery using negative-electrode active material having Si, Sn and/or Pb, with high charge-capacity, superior characteristics including discharge-capacity retention rate over long is provided. Its non-aqueous liquid electrolyte contains carbonate having unsaturated bond and/or halogen and compounds like LiPF6 and/or LiBF4 (first lithium salt) and lithium salt different from said first one, represented by formula below (second lithium salt). Li1(?mXan) (In the formula, l, m and n represent integers of 1 to 10, 1 to 100 and 1 to 200, respectively. ? represents boron, carbon, nitrogen, oxygen or phosphorus. Xa represents functional group having atom selected from 14th to 17th groups of periodic table at its binding-position to ?. Two or more of Xa may be connected to each other to form a ring structure. However, such a case where a is boron and Xa is compound represented by (CiH2(i-2)O4)(CjH2(j-2)O4) is omitted (i and j represent integers of 2 or larger.).
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: March 22, 2022
    Assignees: MITSUBISHI CHEMICAL CORPORATION, MU IONIC SOLUTIONS CORPORATION
    Inventors: Takashi Fujii, Noriko Shima, Youichi Ohashi, Shinichi Kinoshita
  • Patent number: 10424813
    Abstract: Provided is a non-aqueous electrolyte solution that enables the fabrication of a non-aqueous secondary battery with which gas generation during battery use in high-temperature environments or with continuous charging is suppressed. Also provided is a non-aqueous electrolyte secondary battery that uses this non-aqueous electrolyte solution. The non-aqueous electrolyte solution is used in a non-aqueous electrolyte secondary battery that has a positive electrode having a positive electrode active material capable of absorbing and releasing a metal ion, and a negative electrode having a negative electrode active material capable of absorbing and releasing a metal ion, the non-aqueous electrolyte solution containing a compound represented by formula (1) and a nitrile compound in prescribed contents.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: September 24, 2019
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Youichi Ohashi, Takashi Fujii
  • Publication number: 20190229372
    Abstract: A non-aqueous liquid electrolyte secondary battery using negative-electrode active material having Si, Sn and/or Pb, with high charge-capacity, superior characteristics including discharge-capacity retention rate over long is provided. Its non-aqueous liquid electrolyte contains carbonate having unsaturated bond and/or halogen and compounds like LiPF6 and/or LiBF4 (first lithium salt) and lithium salt different from said first one, represented by formula below (second lithium salt). Li1(?mXan) (In the formula, l, m and n represent integers of 1 to 10, 1 to 100 and 1 to 200, respectively. ? represents boron, carbon, nitrogen, oxygen or phosphorus. Xa represents functional group having atom selected from 14th to 17th groups of periodic table at its binding-position to ?. Two or more of Xa may be connected to each other to form a ring structure. However, such a case where a is boron and Xa is compound represented by (CiH2(i-2)O4)(CjH2(j-2)O4) is omitted (i and j represent integers of 2 or larger.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Takashi Fujii, Noriko Shima, Youichi Ohashi, Shinichi Kinoshita
  • Patent number: 10333172
    Abstract: A non-aqueous liquid electrolyte secondary battery using negative-electrode active material having Si, Sn and/or Pb, with high charge-capacity, superior characteristics including discharge-capacity retention rate over long is provided. The non-aqueous liquid electrolyte of the battery contains carbonate having unsaturated bond and/or halogen and and an anhydride compound.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: June 25, 2019
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Takashi Fujii, Noriko Shima, Youichi Ohashi, Shinichi Kinoshita
  • Patent number: 10290901
    Abstract: A non-aqueous liquid electrolyte secondary battery using negative-electrode active material having Si, Sn and/or Pb, with high charge-capacity, superior characteristics including discharge-capacity retention rate over long is provided. The non-aqueous liquid electrolyte of the battery contains carbonate having unsaturated bond and/or halogen and and an anhydride compound.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: May 14, 2019
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Takashi Fujii, Noriko Shima, Youichi Ohashi, Shinichi Kinoshita
  • Publication number: 20180183104
    Abstract: A nonaqueous electrolytic solution that can provide a high energy density nonaqueous electrolyte secondary battery having a high capacity, excellent storage characteristics, and excellent cycle characteristics and suppressing the decomposition of an electrolytic solution and the deterioration thereof when used in a high-temperature environment includes an electrolyte, a nonaqueous solvent, and a compound represented by general formula (1): wherein R1, R2, and R3 each independently represent a hydrogen atom, a cyano group, or an optionally halogen atom-substituted hydrogen group having 1 to 10 carbon atoms, with the priviso that R1 and R2 do not simultaneously represent hydrogen atoms.
    Type: Application
    Filed: February 22, 2018
    Publication date: June 28, 2018
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Takashi Fujii, Youichi Ohashi, Shinichi Kinoshita
  • Patent number: 9941544
    Abstract: A nonaqueous electrolytic solution that can provide a high energy density nonaqueous electrolyte secondary battery having a high capacity, excellent storage characteristics, and excellent cycle characteristics and suppressing the decomposition of an electrolytic solution and the deterioration thereof when used in a high-temperature environment includes an electrolyte, a nonaqueous solvent, and a compound represented by general formula (1): wherein R1, R2, and R3 each independently represent a hydrogen atom, a cyano group, or an optionally halogen atom-substituted hydrogen group having 1 to 10 carbon atoms, with the proviso that R1 and R2 do not simultaneously represent hydrogen atoms.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: April 10, 2018
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Takashi Fujii, Youichi Ohashi, Shinichi Kinoshita
  • Publication number: 20180034105
    Abstract: Provided is a non-aqueous electrolyte solution that enables the fabrication of a non-aqueous secondary battery with which gas generation during battery use in high-temperature environments or with continuous charging is suppressed. Also provided is a non-aqueous electrolyte secondary battery that uses this non-aqueous electrolyte solution. The non-aqueous electrolyte solution is used in a non-aqueous electrolyte secondary battery that has a positive electrode having a positive electrode active material capable of absorbing and releasing a metal ion, and a negative electrode having a negative electrode active material capable of absorbing and releasing a metal ion, the non-aqueous electrolyte solution containing a compound represented by formula (1) and a nitrile compound in prescribed contents.
    Type: Application
    Filed: September 13, 2017
    Publication date: February 1, 2018
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Youichi OHASHI, Takashi FUJII
  • Publication number: 20170324116
    Abstract: There is provided a non-aqueous electrolyte solution enabling fabrication of a non-aqueous electrolyte solution secondary battery which achieves suppressed gas generation when used under high temperature environment and the improved residual capacity of the battery, and the improved cycle characteristic thereof, and further, is excellent in discharge load characteristic (dischargeable at high rate), and a non-aqueous electrolyte solution secondary battery using the non-aqueous electrolyte solution. There is provided a non-aqueous electrolyte solution used in a non-aqueous electrolyte solution secondary battery including a positive electrode having a positive electrode active material capable of absorbing and releasing a metal ion and a negative electrode having a negative electrode active material capable of absorbing and releasing a metal ion, which solution contains a bismaleimide compound having a specific structure, and a non-aqueous electrolyte solution secondary battery using the solution.
    Type: Application
    Filed: July 24, 2017
    Publication date: November 9, 2017
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventor: Youichi OHASHI
  • Patent number: 9608291
    Abstract: A non-aqueous liquid electrolyte secondary battery using negative-electrode active material having Si, Sn and/or Pb, with high charge-capacity, superior characteristics including discharge-capacity retention rate over long is provided. The non-aqueous liquid electrolyte of the battery contains carbonate having unsaturated bond and/or halogen and compounds such as LiPF6 and/or LiBF4 (first lithium salt) and lithium salt different from the first lithium salt.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: March 28, 2017
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Takashi Fujii, Noriko Shima, Youichi Ohashi, Shinichi Kinoshita
  • Publication number: 20170084955
    Abstract: A non-aqueous liquid electrolyte secondary battery using negative-electrode active material having Si, Sn and/or Pb, with high charge-capacity, superior characteristics including discharge-capacity retention rate over long is provided. The non-aqueous liquid electrolyte of the battery contains carbonate having unsaturated bond and/or halogen and and an anhydride compound.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Takashi FUJII, Noriko SHIMA, Youichi OHASHI, Shinichi KINOSHITA
  • Patent number: 9590270
    Abstract: An object is to provide a nonaqueous electrolyte and a nonaqueous-electrolyte secondary battery which have excellent discharge load characteristics and are excellent in high-temperature storability, cycle characteristics, high capacity, continuous-charge characteristics, storability, gas evolution inhibition during continuous charge, high-current-density charge/discharge characteristics, discharge load characteristics, etc. The object has been accomplished with a nonaqueous electrolyte which comprises: a monofluorophosphate and/or a difluorophosphate; and further a compound having a specific chemical structure or specific properties.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: March 7, 2017
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Takashi Fujii, Youichi Ohashi, Shinichi Kinoshita
  • Patent number: 9553333
    Abstract: Provided are a nonaqueous electrolyte solution having improved durability properties in terms of cycling, storage and the like and improved discharge characteristic at a high current density, and a nonaqueous electrolyte battery that uses that nonaqueous electrolyte solution. The nonaqueous electrolyte solution containing a lithium salt and a nonaqueous solvent that dissolves the lithium salt, wherein the nonaqueous electrolyte solution contains a compound represented by formula (1) and at least one compound selected from the group consisting of a compound having a cyano group, a cyclic ester compound having a sulfur atom and a compound having an isocyanate group.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 24, 2017
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Hiroyuki Tokuda, Shuhei Sawa, Minoru Kotato, Kunihisa Shima, Youichi Ohashi, Koji Fukamizu
  • Patent number: 9553334
    Abstract: An object is to provide a nonaqueous electrolyte and a nonaqueous-electrolyte secondary battery which have excellent discharge load characteristics and are excellent in high-temperature storability, cycle characteristics, high capacity, continuous-charge characteristics, storability, gas evolution inhibition during continuous charge, high-current-density charge/discharge characteristics, discharge load characteristics, etc. The object has been accomplished with a nonaqueous electrolyte which comprises: a monofluorophosphate and/or a difluorophosphate; and further a compound having a specific chemical structure or specific properties.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: January 24, 2017
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Takashi Fujii, Youichi Ohashi, Shinichi Kinoshita
  • Patent number: 9496585
    Abstract: The present invention relates to a nonaqueous electrolyte solution comprising a lithium salt and a nonaqueous organic solvent, wherein the nonaqueous electrolyte solution comprises a specific sulfonic acid ester.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: November 15, 2016
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shuhei Sawa, Minoru Kotato, Kunihisa Shima, Masamichi Onuki, Youichi Ohashi, Kazuki Watanabe
  • Patent number: 9343777
    Abstract: A non-aqueous liquid electrolyte suitable for use in a non-aqueous liquid electrolyte secondary battery comprising a negative electrode and a positive electrode, capable of intercalating and deintercalating lithium ions, and the non-aqueous liquid electrolyte, the negative electrode containing a negative-electrode active material having at least one kind of atom selected from the group consisting of Si atom, Sn atom and Pb atom, wherein the non-aqueous liquid electrolyte comprises a carbonate having at least either an unsaturated bond or a halogen atom.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: May 17, 2016
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Takashi Fujii, Noriko Shima, Youichi Ohashi, Shinichi Kinoshita
  • Patent number: 9281541
    Abstract: An object is to provide a nonaqueous electrolyte and a nonaqueous-electrolyte secondary battery which have excellent discharge load characteristics and are excellent in high-temperature storability, cycle characteristics, high capacity, continuous-charge characteristics, storability, gas evolution inhibition during continuous charge, high-current-density charge/discharge characteristics, discharge load characteristics, etc. The object has been accomplished with a nonaqueous electrolyte which comprises: a monofluorophosphate and/or a difluorophosphate; and further a compound having a specific chemical structure or specific properties.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: March 8, 2016
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Hiroyuki Tokuda, Takashi Fujii, Minoru Kotato, Masahiro Takehara, Masamichi Onuki, Youichi Ohashi, Shinichi Kinoshita
  • Patent number: 9252457
    Abstract: A non-aqueous liquid electrolyte suitable for use in a non-aqueous liquid electrolyte secondary battery comprising a negative electrode and a positive electrode, capable of intercalating and deintercalating lithium ions, and the non-aqueous liquid electrolyte, the negative electrode containing a negative-electrode active material having at least one kind of atom selected from the group consisting of Si atom, Sn atom and Pb atom, wherein the non-aqueous liquid electrolyte comprises a carbonate having at least either an unsaturated bond or a halogen atom.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: February 2, 2016
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Takashi Fujii, Noriko Shima, Youichi Ohashi, Shinichi Kinoshita
  • Patent number: 9231277
    Abstract: A nonaqueous electrolyte containing a monofluorophosphate and/or a difluorophosphate and a compound having a specific chemical structure or specific properties. The nonaqueous electrolyte can contain at least one of a saturated chain hydrocarbon, a saturated cyclic hydrocarbon, an aromatic compound having a halogen atom and an ether having a fluorine atom.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: January 5, 2016
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Ryoichi Kato, Hiroyuki Tokuda, Takashi Fujii, Minoru Kotato, Masahiro Takehara, Masamichi Onuki, Youichi Ohashi, Shinichi Kinoshita