Patents by Inventor Young J. Chung

Young J. Chung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9428651
    Abstract: A fouling and stiction-resistant coating suitable for use with marine streamers is made from a silicone undercoat layer and a powdery topcoat layer. The powdery topcoat layer is preferably a non-toxic fluoropolymer which has a low surface energy, a high modulus, and which is not continuous. There may also be a primer layer below the silicone undercoat layer. The powdery topcoat layer is preferably arranged to be penetrable by the feet of barnacles that come into contact with it, with the silicone undercoat layer arranged such that the barnacles' feet that penetrate the powdery topcoat layer bond with the silicone undercoat layer. The powdery topcoat layer is preferably further arranged to peel away from the silicone undercoat layer when force is applied to the barnacles to remove them from the coating.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 30, 2016
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: Rahul Ganguli, Vivek Mehrotra, Young J. Chung, J. Eric Henckel
  • Patent number: 9266733
    Abstract: A layered construction for application to a device or substrate or placement in an enclosed space for use in decontaminating the underlying surface or enclosed space comprises a cathode, an electrolyte layer, an anode and a protective surface layer. A compound that can be electrically decomposed to release on demand and over an extended period of time, an oxidant is included in the layered structure, preferably in the electrolyte layer. Preferred compounds are those which can release halogen ions which react with various different chemical or biological contaminants which may contact the protective layer, destroying, or devitalizing the contaminants.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: February 23, 2016
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: Martin W. Kendig, Young J. Chung, Alan B. Harker, Dennis R. Strauss
  • Patent number: 9180218
    Abstract: A self-decontaminating system for decontaminating a surface on demand is disclosed herein. The system contains an electrochemical cell and at least one portion of the surface forms a functional component of the cell. The system may include an electrocatalytic fabric which is flexible and resistant to tears and breaks, such that the fabric can be rolled up or pleated in order to provide a high surface area structure that can serve as an active filter. The fabric can function as a stand-alone system or a protective coating. Also disclosed are methods for fabricating, decontaminating, and regenerating the self-decontaminating fabric.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: November 10, 2015
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Martin W. Kendig, Young J. Chung
  • Patent number: 8834687
    Abstract: A layered construction for use in decontaminating a surface or enclosed space is described. The construction is an electrochemical cell which includes a cathode, an electrolyte layer, an anode and a protective surface layer. A precursor compound that can be electrically decomposed to release an oxidant, on demand and over an extended period of time, is included in the layered structure, preferably in the electrolyte layer. The oxidant compounds react with various different chemical or biological contaminants in contact the protective layer, thereby deactivating, destroying or devitalizing the contaminants. The layered construction is suitable for application to a device or substrate, or placement in an enclosed space, and can be used on sensitive surfaces such as electronic components and human skin.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: September 16, 2014
    Assignee: Teledyne Licensing, LLC
    Inventors: Martin W. Kendig, Young J. Chung, Alan B. Harker, Dennis R. Strauss, Walther Ellis, Linda S. Powers
  • Publication number: 20140065370
    Abstract: A fouling and stiction-resistant coating suitable for use with marine streamers is made from a silicone undercoat layer and a powdery topcoat layer. The powdery topcoat layer is preferably a non-toxic fluoropolymer which has a low surface energy, a high modulus, and which is not continuous. There may also be a primer layer below the silicone undercoat layer. The powdery topcoat layer is preferably arranged to be penetrable by the feet of barnacles that come into contact with it, with the silicone undercoat layer arranged such that the barnacles' feet that penetrate the powdery topcoat layer bond with the silicone undercoat layer. The powdery topcoat layer is preferably further arranged to peel away from the silicone undercoat layer when force is applied to the barnacles to remove them from the coating.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 6, 2014
    Inventors: RAHUL GANGULI, Vivek Mehrotra, Young J. Chung, J. Eric Henckel
  • Patent number: 8310632
    Abstract: An adhesion promoter for enhancing the bond between adjacent layers of a multilayer structure to prevent delamination thereof is disclosed. The adhesion promoter comprises an aromatic polyimide-based UV-cured acrylate. Also disclosed are laminated structures including liquid crystal displays and bonded missile domes that utilize an adhesion promoter of the invention, and methods for fabricating such structures.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: November 13, 2012
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventor: Young J. Chung
  • Publication number: 20120111719
    Abstract: A layered construction for use in decontaminating a surface or enclosed space is described. The construction is an electrochemical cell which includes a cathode, an electrolyte layer, an anode and a protective surface layer. A precursor compound that can be electrically decomposed to release an oxidant, on demand and over an extended period of time, is included in the layered structure, preferably in the electrolyte layer. The oxidant compounds react with various different chemical or biological contaminants in contact the protective layer, thereby deactivating, destroying or devitalizing the contaminants. The layered construction is suitable for application to a device or substrate, or placement in an enclosed space, and can be used on sensitive surfaces such as electronic components and human skin.
    Type: Application
    Filed: September 28, 2006
    Publication date: May 10, 2012
    Inventors: Martin W. Kendig, Young J. Chung, Alan B. Harker, Dennis R. Strauss, Walther Ellis, Linda S. Powers
  • Publication number: 20100221459
    Abstract: An adhesion promoter for enhancing the bond between adjacent layers of a multilayer structure to prevent delamination thereof is disclosed. The adhesion promoter comprises an aromatic polyimide-based UV-cured acrylate. Also disclosed are laminated structures including liquid crystal displays and bonded missile domes that utilize an adhesion promoter of the invention, and methods for fabricating such structures.
    Type: Application
    Filed: May 4, 2010
    Publication date: September 2, 2010
    Inventor: Young J. Chung
  • Patent number: 7671945
    Abstract: A segmented, rigid-rod aromatic polyimide mixed with a UV curable acrylate photopolymer material comprises an alignment layer for aligning nematic polymeric liquid crystal compensator films. The material may also provide an out-of-plane retardation. The segmented, rigid-rod aromatic polyimide-based UV curable acrylate alignment layer, when applied in appropriate thickness, functions as a negative uniaxial C-plate compensator and causes alignment of the nematic liquid crystal molecules. The combination of the retardation provided by the alignment layer and the compensator film deposited on it provides a significant improvement in the contrast and color stability of liquid crystal displays (LCDs) at large viewing angles.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: March 2, 2010
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Leonard G. Hale, Young J. Chung, William J. Gunning, III
  • Publication number: 20100047124
    Abstract: A self-decontaminating system for decontaminating a surface on demand is disclosed herein. The system contains an electrochemical cell and at least one portion of the surface forms a functional component of the cell. The system may include an electrocatalytic fabric which is flexible and resistant to tears and breaks, such that the fabric can be rolled up or pleated in order to provide a high surface area structure that can serve as an active filter. The fabric can function as a stand-alone system or a protective coating. Also disclosed are methods for fabricating, decontaminating, and regenerating the self-decontaminating fabric.
    Type: Application
    Filed: May 1, 2006
    Publication date: February 25, 2010
    Inventors: Martin W. Kendig, Young J. Chung
  • Patent number: 7579049
    Abstract: A method is provided for enhancing corrosion resistance of a metal surface that includes the step of forming a sol-gel coating in which nanostructured zinc phosphate (Zn3(PO4)2) and zinc oxide (ZnO) phases are present in the mixture. The method may include the steps of mixing an organosilane, organometallic, organic acid, water, and alcohol, and allowing the components of the mixture to partially hydrolyze, followed by adding at least one component having zinc functionality and at least one component having phosphate functionality to the partially hydrolyzed mixture, wherein the zinc component and phosphate component are added in a molar ratio of from about 1.5:1 to about 5:1 (Zn:PO4). The resulting mixture can be applied as a coating to a metal surface to improve the corrosion resistance of the metal and to enhance the adhesion of resinous materials to the metal surface.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: August 25, 2009
    Assignee: The Boeing Company
    Inventors: Young J. Chung, Melitta M. Hon, Martin W. Kendig
  • Publication number: 20090192251
    Abstract: A method is provided for enhancing corrosion resistance of a metal surface that includes the step of forming a sol-gel coating in which nanostructured zinc phosphate (Zn3(PO4)2) and zinc oxide (ZnO) phases are present in the mixture. The method may include the steps of mixing an organosilane, organometallic, organic acid, water, and alcohol and allowing the components of the mixture to partially hydrolyze, followed by adding at least one component having zinc functionality and at least one component having phosphate functionality to the partially hydrolyzed mixture, wherein the zinc component and phosphate component are added in a molar ratio of from about 1.5:1 to about 5:1 (Zn:PO4). The resulting mixture can be applied as a coating to a metal surface to improve the corrosion resistance of the metal and to enhance the adhesion of resinous materials to the metal surface.
    Type: Application
    Filed: July 6, 2004
    Publication date: July 30, 2009
    Inventors: Young J. Chung, Melitta M. Hon, Martin W. Kendig
  • Patent number: 7515231
    Abstract: An anisotropic cross-linked PVA alignment layer for aligning nematic polymeric liquid crystal compensator films, which also provides an out-of-plane retardation. The cross-linked PVA alignment layer, when applied in sufficient thickness functions as both a negative uniaxial C-plate and causes alignment of the nematic liquid crystal molecules. The combination of the retardation provided by the alignment layer and the compensator film deposited on it provides a significant improvement in the contrast and color stability of liquid crystal displays (LCDs) at large viewing angles in which they are used.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: April 7, 2009
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Leonard G. Hale, Young J. Chung, William J. Gunning, III
  • Patent number: 6320634
    Abstract: An O-plate compensator comprising an organic liquid crystal polymer, and methods for fabricating the same, are disclosed. The compensator is a uniaxial birefringent thin film with its extraordinary axis oriented obliquely with respect to the surface of the film. (It is noted that the birefringent thin film could be weakly biaxial.) The oblique orientation of the liquid crystal director, which is parallel to the films extraordinary axis, is achieved by casting an organic thin film onto a surface specially prepared for a orienting liquid crystals, such as obliquely deposited SiO, mechanically rubbed alignment agents. The film can either be cast from a solution of the liquid crystal polymer or from a reactive liquid crystal monomer having a nematic phase. Any solvent that may be used during the fabrication process is evaporated off and the organic thin film is held at a temperature in its nematic phase. If a reactive monomer is used, the film is then photopolymerized.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: November 20, 2001
    Assignee: Rockwell International Corporation
    Inventors: Bruce K. Winker, Hong-Son Ryang, Leslie F. Warren, Jr., Charles Rosenblatt, Zili Li, Young J. Chung
  • Patent number: 5995184
    Abstract: The present invention relates to thin film retardation plates, such as cholesteric and A-plate compensators, for improving the viewing angle and contrast of liquid crystal displays. The A-plate is fabricated using a single substrate onto which a layer of polymerizable reactive mesogens (RMs) is solvent cast. Included in the RMs solution is an additive that migrates to the RM/air interface to lower the surface energy and generate an additive-rich surface layer, which in turn lowers the intrinsic tilt angle of the RMs at the air interface to between 25 degrees (25.degree.) and about zero degrees (0.degree.). The solvent is evaporated and the resulting film is polymerized in the liquid crystal phase to permanently orient the liquid crystal. The resulting film may be readily separated from the substrate and shaped into any desired pattern and combined to form novel compensators.
    Type: Grant
    Filed: September 28, 1998
    Date of Patent: November 30, 1999
    Assignee: Rockwell Science Center, LLC
    Inventors: Young J. Chung, Zhiming Zhuang, Zili Li, Bruce K. Winker, Jane H. Hanamoto
  • Patent number: 5986734
    Abstract: An O-plate compensator comprising an organic liquid crystal polymer, and methods for fabricating the same, are disclosed. The compensator is a uniaxial birefringent thin film with its extraordinary axis oriented obliquely with respect to the surface of the film. (It is noted that the birefringent thin film could be weakly biaxial.) The oblique orientation of the liquid crystal director, which is parallel to the film's extraordinary axis, is achieved by casting an organic thin film onto a surface specially prepared for orienting liquid crystals, such as obliquely deposited SiO, mechanically rubbed alignment agents. The film can either be cast from a solution of the liquid crystal polymer or from a reactive liquid crystal monomer having a nematic phase. Any solvent that may be used during the fabrication process is evaporated off and the organic thin film is held at a temperature in its nematic phase. If a reactive monomer is used, the film is then photopolymerized.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: November 16, 1999
    Assignee: Rockwell International Corporation
    Inventors: Bruce K. Winker, Hong-Son Ryang, Leslie F. Warren, Jr., Charles Rosenblatt, Zili Li, Young J. Chung
  • Patent number: 5711804
    Abstract: Oxide coatings are formed with a desired crystallographic texture over a large surface area. A metallic substrate is electrodeposited or vacuum deposited with a preferred crystallographic orientation, and a sol-gel/thermal process is used to form a "pseudo-epitaxial" oxide coating having crystallites that are influenced by the crystallographic orientation of the substrate. In one embodiment, p-type nickel oxide coatings with desirable electronic properties are produced by sol-gel/thermal processing on nickel substrates electrodeposited from a sulfamate nickel bath at a relatively high current density and low temperature. The electrodeposited nickel substrate has a strong Ni{100} preferred orientation. Epitaxial effects during sol-gel/thermal formation of NiO on the electrodeposited substrate enhance the extent to which the NiO{100} and NiO{111} crystal facets are aligned parallel to the coating surface, and minimize the NiO{110} orientation.
    Type: Grant
    Filed: May 3, 1996
    Date of Patent: January 27, 1998
    Assignee: Rockwell International Corporation
    Inventors: D. Morgan Tench, Leslie F. Warren, Jr., Young J. Chung
  • Patent number: 5595637
    Abstract: A photoelectrochemical method and apparatus are disclosed for fabricating electronic circuits. An electroplating solution is applied to the surface of a reverse biased p-type semiconductor material, such as NiO. The solution-covered NiO surface is illuminated with a light beam directed by computer aided design data to photoelectrochemically deposit a seed layer of metal in an electronic circuit pattern. The seed layer may be thickened by further deposition in a plating bath to form metallic circuit traces on the NiO. If desired, the metallic circuitry may be transferred from the NiO to an alternate substrate having a low dielectric constant. The porosity of the NiO surface can be adjusted to optimize the metallic circuit adhesion for image retention or ease of transfer. The metallic traces may also be treated to reduce adhesion of subsequently deposited metal that can be transferred readily.
    Type: Grant
    Filed: November 17, 1995
    Date of Patent: January 21, 1997
    Assignee: Rockwell International Corporation
    Inventors: D. Morgan Tench, Leslie F. Warren, Jr., Young J. Chung