Patents by Inventor Youngseck Hong

Youngseck Hong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091708
    Abstract: Wastewater is treated though primary treatment of the water by way of a micro-sieve to produce a primary effluent and primary sludge. There is secondary treatment of the primary effluent by way of a membrane bioreactor (MBR) or an integrated fixed film activated sludge (IFAS) reactor to produce a secondary effluent and a waste activated sludge. The micro-sieve may have openings of 250 microns or less, for example about 150 microns. In a process, a gas transfer membrane is immersed in water. Pressurized air flows into the gas transfer membrane. An exhaust gas is withdrawn from the gas transfer membrane and used to produce bubbles from an aerator immersed in the water.
    Type: Application
    Filed: November 14, 2023
    Publication date: March 21, 2024
    Inventors: Pierre Lucien COTE, Steven Kristian PEDERSEN, Wajahat Hussain SYED, Jeffrey Gerard PEETERS, Nicholas William H. ADAMS, Youngseck HONG, Geert-Henk KOOPS, James John ROYSTON
  • Patent number: 11850554
    Abstract: Wastewater is treated though primary treatment of the water by way of a micro-sieve to produce a primary effluent and primary sludge. There is secondary treatment of the primary effluent by way of a membrane bioreactor (MBR) or an integrated fixed film activated sludge (IFAS) reactor to produce a secondary effluent and a waste activated sludge. The micro-sieve may have openings of 250 microns or less, for example about 150 microns. In a process, a gas transfer membrane is immersed in water. Pressurized air flows into the gas transfer membrane. An exhaust gas is withdrawn from the gas transfer membrane and used to produce bubbles from an aerator immersed in the water.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: December 26, 2023
    Assignee: BL TECHNOLOGIES, INC.
    Inventors: Pierre Lucien Cote, Steven Kristian Pedersen, Wajahat Hussain Syed, Jeffrey Gerard Peeters, Nicholas William H. Adams, Youngseck Hong, Geert-Henk Koops, James John Royston
  • Patent number: 11453010
    Abstract: In an apparatus and process described, an organic fraction of solid waste is separated from light contaminants such as plastics and heavy contaminants such as grit. The organic fraction is subsequently processed by anaerobic digestion, which converts volatile solids to gas. In a first stage of the process, the waste is processed through a separator such as a vertical mill, which removes light fraction contamination, reduces organics particle size and dilutes the waste to thereby produce a slurry. In a second stage of the process, the slurry passes through a grit removal system, which removes heavy and settleable material, for example by way of a hydrocyclone. The light and heavy fraction contaminants are not carried through to the digestion process. The particle size of the organics is also reduced to facilitate digestion and the slurry has a dry solids concentration suitable for anaerobic digestion.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: September 27, 2022
    Assignee: BL TECHNOLOGIES, INC.
    Inventors: Michael Theodoulou, Youngseck Hong, Nick Braithwaite, Marion De Backer
  • Publication number: 20190135667
    Abstract: Wastewater is treated though primary treatment of the water by way of a micro-sieve to produce a primary effluent and primary sludge. There is secondary treatment of the primary effluent by way of a membrane bioreactor (MBR) or an integrated fixed film activated sludge (IFAS) reactor to produce a secondary effluent and a waste activated sludge. The micro-sieve may have openings of 250 microns or less, for example about 150 microns. In a process, a gas transfer membrane is immersed in water. Pressurized air flows into the gas transfer membrane. An exhaust gas is withdrawn from the gas transfer membrane and used to produce bubbles from an aerator immersed in the water.
    Type: Application
    Filed: November 2, 2018
    Publication date: May 9, 2019
    Inventors: Pierre Lucien COTE, Steven Kristian PEDERSEN, Wajahat Hussain SYED, Jeffrey Gerard PEETERS, Nicholas William H. ADAMS, Youngseck HONG, Geert-Henk KOOPS, James John ROYSTON
  • Publication number: 20190111440
    Abstract: In an apparatus and process described, an organic fraction of solid waste is separated from light contaminants such as plastics and heavy contaminants such as grit. The organic fraction is subsequently processed by anaerobic digestion, which converts volatile solids to gas. In a first stage of the process, the waste is processed through a separator such as a vertical mill, which removes light fraction contamination, reduces organics particle size and dilutes the waste to thereby produce a slurry. In a second stage of the process, the slurry passes through a grit removal system, which removes heavy and settleable material, for example by way of a hydrocyclone. The light and heavy fraction contaminants are not carried through to the digestion process. The particle size of the organics is also reduced to facilitate digestion and the slurry has a dry solids concentration suitable for anaerobic digestion.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 18, 2019
    Inventors: Michael Theodoulou, Youngseck Hong, Nick Braithwaite, Marion De Backer
  • Patent number: 10160679
    Abstract: Wastewater is treated though primary treatment of the water by way of a micro-sieve to produce a primary effluent and primary sludge. There is secondary treatment of the primary effluent by way of a membrane bioreactor (MBR) or an integrated fixed film activated sludge (IFAS) reactor to produce a secondary effluent and a waste activated sludge. The micro-sieve may have openings of 250 microns or less, for example about 150 microns. In a process, a gas transfer membrane is immersed in water. Pressurized air flows into the gas transfer membrane. An exhaust gas is withdrawn from the gas transfer membrane and used to produce bubbles from an aerator immersed in the water.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: December 25, 2018
    Assignee: BL Technologies, Inc.
    Inventors: Pierre Lucien Cote, Steven Kristian Pedersen, Wajahat Hussain Syed, Jeffrey Gerard Peeters, Nicholas William H. Adams, Youngseck Hong, Geert-Henk Koops, James John Royston
  • Publication number: 20170088449
    Abstract: Wastewater is treated though primary treatment of the water by way of a micro-sieve to produce a primary effluent and primary sludge. There is secondary treatment of the primary effluent by way of a membrane bioreactor (MBR) or an integrated fixed film activated sludge (IFAS) reactor to produce a secondary effluent and a waste activated sludge. The micro-sieve may have openings of 250 microns or less, for example about 150 microns. In a process, a gas transfer membrane is immersed in water. Pressurized air flows into the gas transfer membrane. An exhaust gas is withdrawn from the gas transfer membrane and used to produce bubbles from an aerator immersed in the water.
    Type: Application
    Filed: March 11, 2015
    Publication date: March 30, 2017
    Applicant: General Electric Company
    Inventors: Pierre Lucien COTE, Steven Kristian PEDERSEN, Wajahat Hussain SYED, Jeffrey Gerard PEETERS, Nicholas William H. ADAMS, Youngseck HONG, Geert-Henk KOOPS, James John ROYSTON
  • Patent number: 9556046
    Abstract: A membrane supported biofilm apparatus has a plurality of hollow fiber gas permeable membranes in a tank containing water to be treated. A biofilm supported on the membranes occupies between about 40% and 80% of the volume of water to be treated in a reactor. Wastewater treatment processes are described. A process to denitrify water or treat oxidized contaminants comprises introducing hydrogen into an inner volume of the membranes to grow autotrophic organisms in the biofilm near the membrane and heterotrophic organism near the water. Another process is operated as a biomass concentration of at least 10 g/L and up to about 40 g/L to maintain a biofilm having a surface area of over 1000 square meters per cubic meter of tank volume. A hybrid process has suspended biomass and a membrane supported biofilm.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: January 31, 2017
    Assignee: ZENON TECHNOLOGY PARTNERSHIP
    Inventors: Hidayat Husain, Rocco Mazzaferro, Minggang Liu, Richard Wong, Heather Lossing, Fengshen Fan, Youngseck Hong, Reid Bayly
  • Patent number: 9433903
    Abstract: A gas sparger for a filtering membrane system produces an intermittent flow of bubbles even if provided with a relatively continuous gas flow. The sparger has a housing to collect a pocket of gas and a conduit to release some of the gas from the pocket when the pocket reaches a sufficient size. Optionally, a cover over an outlet from the conduit may break up or distribute the released gas. A large sparger for can comprise a plurality of smaller units or areas. The supply of gas to the sparger may vary in flow rate over larger periods of time in response to changes in conditions in the membrane system to change the time between consecutive bursts of bubbles. A gas supply pipe may have two or more outlets at different elevations in communication with each of two or more units or areas.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: September 6, 2016
    Assignee: ZENON TECHNOLOGY PARTNERSHIP
    Inventors: Jeffrey Ronald Cumin, Henry Behmann, Youngseck Hong, Reid Bayly, Zhaoyang Wan, Joseph Breitner
  • Patent number: 9364805
    Abstract: A gas sparger produces an intermittent flow of bubbles even if provided with a continuous gas flow. The sparger has a housing to collect a pocket of gas and a conduit to release some of the gas from the pocket when the pocket reaches a sufficient size. The housing is integrated with the potting head of a module. The conduit passes through the potting head.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: June 14, 2016
    Assignee: General Electric Company
    Inventors: Jeffrey Ronald Cumin, Reid Allyn Bayly, Youngseck Hong
  • Patent number: 9358505
    Abstract: A gas sparger produces an intermittent flow of bubbles even if provided with a continuous gas flow. The sparger has a housing to collect a pocket of gas and a conduit to release some of the gas from the pocket when the pocket reaches a sufficient size. Optionally, a cover over an outlet from the conduit may break up or distribute the released gas. A large sparger for use with a commercial membrane module can comprise a plurality of smaller units.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: June 7, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Jeff Cumin, Henry Behmann, Youngseck Hong, Reid Bayly
  • Publication number: 20150166380
    Abstract: A membrane supported biofilm apparatus has a plurality of hollow fiber gas permeable membranes in a tank containing water to be treated. A biofilm supported on the membranes occupies between about 40% and 80% of the volume of water to be treated in a reactor. Wastewater treatment processes are described. A process to denitrify water or treat oxidized contaminants comprises introducing hydrogen into an inner volume of the membranes to grow autotrophic organisms in the biofilm near the membrane and heterotrophic organism near the water. Another process is operated as a biomass concentration of at least 10 g/L and up to about 40 g/L to maintain a biofilm having a surface area of over 1000 square metres per cubic metre of tank volume. A hybrid process has suspended biomass and a membrane supported biofilm.
    Type: Application
    Filed: February 27, 2015
    Publication date: June 18, 2015
    Inventors: Hidayat HUSAIN, Rocco MAZZAFERRO, Minggang LIU, Richard WONG, Heather LOSSING, Fengshen FAN, Youngseck HONG, Reid BAYLY
  • Patent number: 8986540
    Abstract: A membrane supported biofilm apparatus has a plurality of hollow fiber gas permeable membranes in a tank containing water to be treated. A biofilm supported on the membranes occupies between about 40% and 80% of the volume of water to be treated in a reactor. Wastewater treatment processes are described. A process to denitrify water or treat oxidized contaminants comprises introducing hydrogen into an inner volume of the membranes to grow autotrophic organisms in the biofilm near the membrane and heterotrophic organism near the water. Another process is operated as a biomass concentration of at least 10 g/L and up to about 40 g/L to maintain a biofilm having a surface area of over 1000 square meters per cubic meter of tank volume. A hybrid process has suspended biomass and a membrane supported biofilm.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: March 24, 2015
    Assignee: Zenon Technology Partnership
    Inventors: Hidayat Husain, Rocco Mazzaferro, Minggang Liu, Richard Wong, Heather Lossing, Fengshen Fan, Youngseck Hong, Reid Bayly
  • Patent number: 8758619
    Abstract: A membrane supported biofilm apparatus has a plurality of hollow fiber gas permeable membranes in a tank containing water to be treated. A biofilm supported on the membranes occupies between about 40% and 80% of the volume of water to be treated in a reactor. Wastewater treatment processes are described. A process to denitrify water or treat oxidized contaminants comprises introducing hydrogen into an inner volume of the membranes to grow autotrophic organisms in the biofilm near the membrane and heterotrophic organism near the water. Another process is operated as a biomass concentration of at least 10 g/L and up to about 40 g/L to maintain a biofilm having a surface area of over 1000 square meters per cubic meter of tank volume. A hybrid process has suspended biomass and a membrane supported biofilm.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: June 24, 2014
    Assignee: Zenon Technology Partnership
    Inventors: Hidayat Husain, Rocco Mazzaferro, Minggang Liu, Richard Wong, Heather Lossing, Fengshen Fan, Youngseck Hong, Reid Bayly
  • Publication number: 20140008280
    Abstract: A membrane supported biofilm apparatus has a plurality of hollow fiber gas permeable membranes in a tank containing water to be treated. A biofilm supported on the membranes occupies between about 40% and 80% of the volume of water to be treated in a reactor. Wastewater treatment processes are described. A process to denitrify water or treat oxidized contaminants comprises introducing hydrogen into an inner volume of the membranes to grow autotrophic organisms in the biofilm near the membrane and heterotrophic organism near the water. Another process is operated as a biomass concentration of at least 10 g/L and up to about 40 g/L to maintain a biofilm having a surface area of over 1000 square metres per cubic metre of tank volume. A hybrid process has suspended biomass and a membrane supported biofilm.
    Type: Application
    Filed: September 12, 2013
    Publication date: January 9, 2014
    Applicant: ZENON TECHNOLOGY PARTNERSHIP
    Inventors: Hidayat HUSAIN, Rocco MAZZAFERRO, Minggang LIU, Richard WONG, Heather LOSSING, Fengshen FAN, Youngseck HONG, Reid BAYLY
  • Patent number: 8580113
    Abstract: In an anaerobic membrane bioreactor (“MBR”), a closed anaerobic process tank contains a membrane filter or is connected to an external tank containing a membrane filter. A pocket of biogas accumulates at the top of the process tank. Biogas is taken from the pocket, pumped to the bottom of the membrane filter to provide bubbles to inhibit membrane fouling, and returned to the pocket. Excess biogas produced as the wastewater is degraded is removed from the system and may be used as a product. However, biogas and liquid are maintained in the system at a pressure above atmospheric, for example 10 kPa or more above atmospheric pressure, sufficient to provide at least a material contribution to the transmembrane pressure driving permeation through the membranes. The overall energy requirements of the system may be reduced. Further, with sufficient pressure, suction pumps attached to the membranes may not be required.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: November 12, 2013
    Assignee: Zenon Technology Partnership
    Inventors: Youngseck Hong, Reid Allyn Bayly, Domenico Salasso, Jeffrey Ronald Cumin, David Eaton Sproule, Sheng Chang
  • Patent number: 8528745
    Abstract: A membrane supported biofilm apparatus has a plurality of hollow fiber gas permeable membranes in a tank containing water to be treated. The membranes have an outside diameter of about 200 microns or less and occupy between 0.5% and 4% of the tank volume. A biofilm supported on the membranes occupies between about 40% and 80% of the volume of water to be treated in a reactor. The membranes may be oriented generally vertically and a spreader may be located near the bottom of the apparatus to disperse the membranes. Wastewater treatment processes are described. A process to dentrify water or treat oxidized contaminants comprises introducing hydrogen into an inner volume of the membranes to grow autotrophic organisms in the biofilm near the membrane and heterotrophic organism near the water. Another process is operated at a biomass concentration of at least 10 g/L and up to about 40 g/L to maintain a biofilm having a surface area of over 1000 square metres per cubic metre of tank volume.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: September 10, 2013
    Assignee: General Electric Company
    Inventors: Hidayat Husain, Rocco Mazzaferro, Minggang Liu, Richard Wong, Heather Lossing, Fengshen Fan, Youngseck Hong, Reid Bayly
  • Publication number: 20120325742
    Abstract: A gas sparger for a filtering membrane system produces an intermittent flow of bubbles even if provided with a relatively continuous gas flow. The sparger has a housing to collect a pocket of gas and a conduit to release some of the gas from the pocket when the pocket reaches a sufficient size. Optionally, a cover over an outlet from the conduit may break up or distribute the released gas. A large sparger for can comprise a plurality of smaller units or areas. The supply of gas to the sparger may vary in flow rate over larger periods of time in response to changes in conditions in the membrane system to change the time between consecutive bursts of bubbles. A gas supply pipe may have two or more outlets at different elevations in communication with each of two or more units or areas. The discharge of gas between two or more units or areas may be synchronized. One or more of a set of units or area may receive a supplied gas at a higher flow rate.
    Type: Application
    Filed: July 30, 2010
    Publication date: December 27, 2012
    Inventors: Jeffrey Ronald Cumin, Henry Behmann, Youngseck Hong, Reid Bayly, Zhaoyang Wan, Joseph Breitner
  • Publication number: 20120091602
    Abstract: A gas sparger produces an intermittent flow of bubbles even if provided with a continuous gas flow. The sparger has a housing to collect a pocket of gas and a conduit to release some of the gas from the pocket when the pocket reaches a sufficient size. The housing is integrated with the potting head of a module. The conduit passes through the potting head.
    Type: Application
    Filed: October 15, 2010
    Publication date: April 19, 2012
    Inventors: Jeffrey Ronald Cumin, Reid Allyn Bayly, Youngseck Hong
  • Publication number: 20120048801
    Abstract: In an anaerobic membrane bioreactor (“MBR”), a closed anaerobic process tank contains a membrane filter or is connected to an external tank containing a membrane filter. A pocket of biogas accumulates at the top of the process tank. Biogas is taken from the pocket, pumped to the bottom of the membrane filter to provide bubbles to inhibit membrane fouling, and returned to the pocket. Excess biogas produced as the wastewater is degraded is removed from the system and may be used as a product. However, biogas and liquid are maintained in the system at a pressure above atmospheric, for example 10 kPa or more above atmospheric pressure, sufficient to provide at least a material contribution to the transmembrane pressure driving permeation through the membranes. The overall energy requirements of the system may be reduced. Further, with sufficient pressure, suction pumps attached to the membranes may not be required.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Inventors: Youngseck Hong, Reid Allyn Bayly, Domenico Salasso, Jeffrey Ronald Cumin, David Eaton Sproule, Sheng Chang