Patents by Inventor Yousong ZHANG

Yousong ZHANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11443879
    Abstract: An integrated magnetic device has a magnetic core which includes layers of the magnetic material located in a trench in a dielectric layer. The magnetic material layers are flat and parallel to a bottom of the trench, and do not extend upward along sides of the trench. The integrated magnetic device is formed by forming layers of the magnetic material over the dielectric layer and extending into the trench. A protective layer is formed over the magnetic material layers. The magnetic material layers are removed from over the dielectric layer, leaving the magnetic material layers and a portion of the protective layer in the trench. The magnetic material layers along sides of the trench are subsequently removed. The magnetic material layers along the bottom of the trench provide the magnetic core.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: September 13, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Fuchao Wang, Yousong Zhang, Neal Thomas Murphy, Brian Zinn, Jonathan P. Davis
  • Publication number: 20190341181
    Abstract: An integrated magnetic device has a magnetic core which includes layers of the magnetic material located in a trench in a dielectric layer. The magnetic material layers are flat and parallel to a bottom of the trench, and do not extend upward along sides of the trench. The integrated magnetic device is formed by forming layers of the magnetic material over the dielectric layer and extending into the trench. A protective layer is formed over the magnetic material layers. The magnetic material layers are removed from over the dielectric layer, leaving the magnetic material layers and a portion of the protective layer in the trench. The magnetic material layers along sides of the trench are subsequently removed. The magnetic material layers along the bottom of the trench provide the magnetic core.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Fuchao Wang, Yousong Zhang, Neal Thomas Murphy, Brian Zinn, Jonathan P. Davis
  • Patent number: 10403424
    Abstract: An integrated magnetic device has a magnetic core which includes layers of the magnetic material located in a trench in a dielectric layer. The magnetic material layers are flat and parallel to a bottom of the trench, and do not extend upward along sides of the trench. The integrated magnetic device is formed by forming layers of the magnetic material over the dielectric layer and extending into the trench. A protective layer is formed over the magnetic material layers. The magnetic material layers are removed from over the dielectric layer, leaving the magnetic material layers and a portion of the protective layer in the trench. The magnetic material layers along sides of the trench are subsequently removed. The magnetic material layers along the bottom of the trench provide the magnetic core.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: September 3, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Fuchao Wang, Yousong Zhang, Neal Thomas Murphy, Brian Zinn, Jonathan P. Davis
  • Publication number: 20190211458
    Abstract: An etchant for simultaneously etching NiFe and AlN with approximately equal etch rates that comprises phosphoric acid, acetic acid, nitric acid and deionized water. Alternating layers of NiFe and AlN may be used to form a magnetic core of a fluxgate magnetometer in an integrated circuit. The wet etch provides a good etch rate of the alternating layers with good dimensional control and with a good resulting magnetic core profile. The alternating layers of NiFe and AlN may be encapsulated with a stress relief layer. A resist pattern may be used to define the magnetic core geometry. The overetch time of the wet etch may be controlled so that the magnetic core pattern extends at least 1.5 um beyond the base of the magnetic core post etch. The photo mask used to form the resist pattern may also be used to form a stress relief etch pattern.
    Type: Application
    Filed: March 15, 2019
    Publication date: July 11, 2019
    Inventors: Mona M. EISSA, Yousong ZHANG, Mark JENSON
  • Patent number: 10266950
    Abstract: An etchant for simultaneously etching NiFe and AlN with approximately equal etch rates that comprises phosphoric acid, acetic acid, nitric acid and deionized water. Alternating layers of NiFe and AlN may be used to form a magnetic core of a fluxgate magnetometer in an integrated circuit. The wet etch provides a good etch rate of the alternating layers with good dimensional control and with a good resulting magnetic core profile. The alternating layers of NiFe and AlN may be encapsulated with a stress relief layer. A resist pattern may be used to define the magnetic core geometry. The overetch time of the wet etch may be controlled so that the magnetic core pattern extends at least 1.5 um beyond the base of the magnetic core post etch. The photo mask used to form the resist pattern may also be used to form a stress relief etch pattern.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: April 23, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mona M. Eissa, Yousong Zhang, Mark Jenson
  • Patent number: 10199573
    Abstract: A method of fabricating a semiconductor device includes aligning an alignment structure of a wafer to a direction of a magnetic field created by an external electromagnet and depositing a magnetic layer (e.g., NiFe) over the wafer in the presence of the magnetic field and while applying the magnetic field and maintaining a temperature of the wafer below 150° C. An insulation layer (e.g., AlN) is deposited on the first magnetic layer. The alignment structure of the wafer is again aligned to the direction of the magnetic field and a second magnetic layer is deposited on the insulation layer, in the presence of the magnetic field and while maintaining the temperature of the wafer below 150° C.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: February 5, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mona Eissa, Dok Won Lee, Byron Shulver, Yousong Zhang
  • Publication number: 20180358163
    Abstract: An integrated magnetic device has a magnetic core which includes layers of the magnetic material located in a trench in a dielectric layer. The magnetic material layers are flat and parallel to a bottom of the trench, and do not extend upward along sides of the trench. The integrated magnetic device is formed by forming layers of the magnetic material over the dielectric layer and extending into the trench. A protective layer is formed over the magnetic material layers. The magnetic material layers are removed from over the dielectric layer, leaving the magnetic material layers and a portion of the protective layer in the trench. The magnetic material layers along sides of the trench are subsequently removed. The magnetic material layers along the bottom of the trench provide the magnetic core.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 13, 2018
    Applicant: Texas Instruments Incorporated
    Inventors: Fuchao Wang, Yousong Zhang, Neal Thomas Murphy, Brian Zinn, Jonathan P. Davis
  • Publication number: 20180087161
    Abstract: An etchant for simultaneously etching NiFe and AlN with approximately equal etch rates that comprises phosphoric acid, acetic acid, nitric acid and deionized water. Alternating layers of NiFe and AlN may be used to form a magnetic core of a fluxgate magnetometer in an integrated circuit. The wet etch provides a good etch rate of the alternating layers with good dimensional control and with a good resulting magnetic core profile. The alternating layers of NiFe and AlN may be encapsulated with a stress relief layer. A resist pattern may be used to define the magnetic core geometry. The overetch time of the wet etch may be controlled so that the magnetic core pattern extends at least 1.5 um beyond the base of the magnetic core post etch. The photo mask used to form the resist pattern may also be used to form a stress relief etch pattern.
    Type: Application
    Filed: November 10, 2017
    Publication date: March 29, 2018
    Inventors: Mona M. EISSA, Yousong ZHANG, Mark JENSON
  • Patent number: 9840781
    Abstract: An etchant for simultaneously etching NiFe and AlN with approximately equal etch rates that comprises phosphoric acid, acetic acid, nitric acid and deionized water. Alternating layers of NiFe and AlN may be used to form a magnetic core of a fluxgate magnetometer in an integrated circuit. The wet etch provides a good etch rate of the alternating layers with good dimensional control and with a good resulting magnetic core profile. The alternating layers of NiFe and AlN may be encapsulated with a stress relief layer. A resist pattern may be used to define the magnetic core geometry. The overetch time of the wet etch may be controlled so that the magnetic core pattern extends at least 1.5 um beyond the base of the magnetic core post etch. The photo mask used to form the resist pattern may also be used to form a stress relief etch pattern.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: December 12, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mona M. Eissa, Yousong Zhang, Mark Jenson
  • Publication number: 20170346000
    Abstract: A method of fabricating a semiconductor device includes aligning an alignment structure of a wafer to a direction of a magnetic field created by an external electromagnet and depositing a magnetic layer (e.g., NiFe) over the wafer in the presence of the magnetic field and while applying the magnetic field and maintaining a temperature of the wafer below 150° C. An insulation layer (e.g., AlN) is deposited on the first magnetic layer. The alignment structure of the wafer is again aligned to the direction of the magnetic field and a second magnetic layer is deposited on the insulation layer, in the presence of the magnetic field and while maintaining the temperature of the wafer below 150° C.
    Type: Application
    Filed: May 25, 2017
    Publication date: November 30, 2017
    Inventors: Mona Eissa, Dok Won Lee, Byron Shulver, Yousong Zhang
  • Publication number: 20160155935
    Abstract: An etchant for simultaneously etching NiFe and AlN with approximately equal etch rates that comprises phosphoric acid, acetic acid, nitric acid and deionized water. Alternating layers of NiFe and AlN may be used to form a magnetic core of a fluxgate magnetometer in an integrated circuit. The wet etch provides a good etch rate of the alternating layers with good dimensional control and with a good resulting magnetic core profile. The alternating layers of NiFe and AlN may be encapsulated with a stress relief layer. A resist pattern may be used to define the magnetic core geometry. The overetch time of the wet etch may be controlled so that the magnetic core pattern extends at least 1.5 um beyond the base of the magnetic core post etch. The photo mask used to form the resist pattern may also be used to form a stress relief etch pattern.
    Type: Application
    Filed: December 2, 2014
    Publication date: June 2, 2016
    Inventors: Mona M. EISSA, Yousong ZHANG, Mark JENSON