Patents by Inventor Yu-Hung Lin

Yu-Hung Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240154314
    Abstract: An antenna device includes a substrate, two T-shaped radiation portions, two feeding portions and an isolation structure. The substrate has an upper surface, a side surface and a lower surface. Two opposite ends of the side surface are connected to the upper surface and the lower surface, respectively. The two T-shaped radiation portions are located on the upper surface of the substrate. The two feeding portions are connected to the two T-shaped radiation portions, respectively, and the two feeding portions are located on the side surface of the substrate. The isolation structure is located on the upper surface of the substrate, and the isolation structure is disposed between the two T-shaped radiation portions.
    Type: Application
    Filed: March 1, 2023
    Publication date: May 9, 2024
    Inventors: Hsin-Hung Lin, Yu Shu Tai, WEI-CHEN CHENG
  • Publication number: 20240152187
    Abstract: A foldable electronic device including a first body, a second body, a hinge module, and a cover is provided. The hinge module is connected to the first body and the second body, such that the first body and the second body are rotated relatively to be folded or unfolded via the hinge module. The hinge module has a protruding rod eccentric to a rotation center of the hinge module. The cover is pivoted to the second body and located on a moving path of the protruding rod. The hinge module drives the cover to be rotated relative to the second body via the protruding rod.
    Type: Application
    Filed: October 24, 2023
    Publication date: May 9, 2024
    Applicant: Acer Incorporated
    Inventors: Chun-Hung Wen, Chun-Hsien Chen, Hui-Ping Sun, Wen-Neng Liao, Yu-Ming Lin, Kuan-Lin Chen
  • Publication number: 20240153901
    Abstract: A first and second semiconductor device are bonded together using a bonding contact pad embedded within a bonding dielectric layer of the first semiconductor device and at least one bonding via embedded within a bonding dielectric layer of the second semiconductor device. The bonding contact pad extends a first dimension in a first direction perpendicular to the major surface of the first semiconductor device and a second dimension in a second direction parallel to the plane of the first semiconductor wafer, the second dimension being at least twice the first dimension. The bonding via extends a third dimension in the first direction and a fourth dimension in the second direction, the third dimension being at least twice the first dimension. The bonding contact pad and bonding via may be at least partially embedded in respective bonding dielectric layers in respective topmost dielectric layers of respective stacked interconnect layers.
    Type: Application
    Filed: January 9, 2023
    Publication date: May 9, 2024
    Inventors: Yu-Hung Lin, Han-Jong Chia, Wei-Ming Wang, Kuo-Chung Yee, Chen Chen, Shih-Peng Tai
  • Publication number: 20240147376
    Abstract: Apparatus and methods are provided for thermal throttling for UE configured with multi-panel transceiving on FR2. In one novel aspect, the UE prioritizes throttling actions based on signal qualities of each transceiving panel. In one embodiment, the switching to the target panel from the active panel is selected as the highest priority throttling action when the signal quality of the target panel is similar to the active panel. In another embodiment, the UE further determines if the quality of the target panel is sufficient to support mmW transceiving before switching to the target panel. In one embodiment, the UE reduces one or more antennae of an active panel when the signal quality difference between the active panel and the target panel is bigger than a predefined gap threshold.
    Type: Application
    Filed: September 22, 2023
    Publication date: May 2, 2024
    Inventors: Chih-Chieh Lai, Feng-Wen Weng, Yu-Hung Huang, Chi-Hsiang Lin
  • Publication number: 20240142664
    Abstract: Two types of blue light blocking contact lenses are provided and are formed by curing different compositions. The first composition includes a blue light blocking component formed by mixing or reacting a first hydrophilic monomer and a yellow dye, a first colored dye component formed by mixing or reacting a second hydrophilic monomer and a first colored dye, at least one third hydrophilic monomer, a crosslinker, and an initiator. The first colored dye includes a green dye, a cyan dye, a blue dye, an orange dye, a red dye, a black dye, or combinations thereof. The second composition includes a blue light blocking component, at least one hydrophilic monomer, a crosslinker, and an initiator. The blue light blocking component is formed by mixing or reacting glycerol monomethacrylate and a yellow dye. Further, methods for preparing the above contact lenses are provided.
    Type: Application
    Filed: February 12, 2023
    Publication date: May 2, 2024
    Inventors: Han-Yi CHANG, Chun-Han CHEN, Tsung-Kao HSU, Wei-che WANG, Yu-Hung LIN, Wan-Ying GAO, Li-Hao LIU
  • Publication number: 20240146316
    Abstract: A system performs a method of adaptive voltage scaling. The method includes generating a voltage adjustment signal based on a hint from a frequency-locked loop (FLL). The FLL includes an oscillator that generates a clock signal at a clock frequency. The voltage adjustment signal is sent to a power management unit (PMU) to cause the PMU to supply an adjusted operating voltage to the FLL. The method further includes updating a minimum code set according to the adjusted operating voltage and an operating temperature. The clock frequency of the oscillator is generated to match a target frequency according to the adjusted operating voltage and a code determined by the FLL from the minimum code set.
    Type: Application
    Filed: October 19, 2023
    Publication date: May 2, 2024
    Inventors: Yu-Shu Chen, Hsin-Chen Chen, Kuan Hung Lin, Jeng-Yi Lin
  • Patent number: 11972974
    Abstract: An IC structure includes a transistor, a source/drain contact, a metal oxide layer, a non-metal oxide layer, a barrier structure, and a via. The transistor includes a gate structure and source/drain regions on opposite sides of the gate structure. The source/drain contact is over one of the source/drain regions. The metal oxide layer is over the source/drain contact. The non-metal oxide layer is over the metal oxide layer. The barrier structure is over the source/drain contact. The barrier structure forms a first interface with the metal oxide layer and a second interface with the non-metal oxide layer, and the second interface is laterally offset from the first interface. The via extends through the non-metal oxide layer to the barrier structure.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: April 30, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sung-Li Wang, Shuen-Shin Liang, Yu-Yun Peng, Fang-Wei Lee, Chia-Hung Chu, Mrunal Abhijith Khaderbad, Keng-Chu Lin
  • Publication number: 20240136317
    Abstract: According to an exemplary embodiment, a substrate having a first area and a second area is provided. The substrate includes a plurality of pads. Each of the pads has a pad size. The pad size in the first area is larger than the pad size in the second area.
    Type: Application
    Filed: January 3, 2024
    Publication date: April 25, 2024
    Inventors: Wei-Hung Lin, Hsiu-Jen Lin, Ming-Da Cheng, Yu-Min Liang, Chen-Shien Chen, Chung-Shi Liu
  • Publication number: 20240136472
    Abstract: A semiconductor light-emitting device includes a semiconductor stack including a first semiconductor layer and a second semiconductor layer; a first reflective layer formed on the first semiconductor layer and including a plurality of vias; a plurality of contact structures respectively filled in the vias and electrically connected to the first semiconductor layer; a second reflective layer including metal material formed on the first reflective layer and contacting the contact structures; a plurality of conductive vias surrounded by the semiconductor stack; a connecting layer formed in the conductive vias and electrically connected to the second semiconductor layer; a first pad portion electrically connected to the second semiconductor layer; and a second pad portion electrically connected to the first semiconductor layer, wherein a shortest distance between two of the conductive vias is larger than a shortest distance between the first pad portion and the second pad portion.
    Type: Application
    Filed: December 29, 2023
    Publication date: April 25, 2024
    Inventors: Chao-Hsing CHEN, Jia-Kuen WANG, Tzu-Yao TSENG, Tsung-Hsun CHIANG, Bo-Jiun HU, Wen-Hung CHUANG, Yu-Ling LIN
  • Publication number: 20240128127
    Abstract: A semiconductor device includes a single diffusion break (SDB) structure dividing a fin-shaped structure into a first portion and a second portion, an isolation structure on the SDB structure, a first spacer adjacent to the isolation structure, a metal gate adjacent to the isolation structure, a shallow trench isolation (STI around the fin-shaped structure, and a second isolation structure on the STI. Preferably, a top surface of the first spacer is lower than a top surface of the isolation structure and a bottom surface of the first spacer is lower than a bottom surface of the metal gate.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Kai Hsu, Ssu-l Fu, Chun-ya Chiu, Chi-Ting Wu, Chin-HUNG Chen, Yu-Hsiang Lin
  • Publication number: 20240128178
    Abstract: A method of forming a semiconductor structure is provided, and includes trimming a first substrate to form a recess on a sidewall of the first substrate. A conductive structure is formed in the first substrate. The method includes bonding the first substrate to a carrier. The method includes thinning down the first substrate. The method also includes forming a dielectric material in the recess and over a top surface of the thinned first substrate. The method further includes performing a planarization process to remove the dielectric material and expose the conductive structure over the top surface. In addition, the method includes removing the carrier from the first substrate.
    Type: Application
    Filed: February 8, 2023
    Publication date: April 18, 2024
    Inventors: Yu-Hung LIN, Wei-Ming WANG, Su-Chun YANG, Jih-Churng TWU, Shih-Peng TAI, Kuo-Chung YEE
  • Publication number: 20240120157
    Abstract: A keyswitch structure includes a baseplate, a keycap disposed over the baseplate and configured to be movable relative to the baseplate, a membrane switch disposed between the keycap and the baseplate and configured to have one or more buffer portions with two open edges opposite to each other, and a first linking bar connected to the keycap and disposed between the keycap and the membrane switch. The first linking bar has a first long side and a first short side connected to each other. When the keycap moves relative to the baseplate, the one or more buffer portions provide buffer to the first short side and/or an end section of the first long side.
    Type: Application
    Filed: September 25, 2023
    Publication date: April 11, 2024
    Inventors: YU-MING HUANG, CHIN-HUNG LIN
  • Publication number: 20240113034
    Abstract: A method for forming a semiconductor package is provided. The method includes forming a first alignment mark in a first substrate of a first wafer and forming a first bonding structure over the first substrate. The method also includes forming a second bonding structure over a second substrate of a second wafer and trimming the second substrate, so that a first width of the first substrate is greater than a second width of the second substrate. The method further includes attaching the second wafer to the first wafer via the first bonding structure and the second bonding structure, thinning the second wafer until a through-substrate via in the second substrate is exposed, and performing a photolithography process on the second wafer using the first alignment mark.
    Type: Application
    Filed: February 8, 2023
    Publication date: April 4, 2024
    Inventors: Yu-Hung LIN, Wei-Ming WANG, Chih-Hao YU, PaoTai HUANG, Pei-Hsuan LO, Shih-Peng TAI
  • Publication number: 20240113695
    Abstract: A modulation device including a plurality of electronic elements, at least one first signal line and a first driving circuit is provided. The at least one first signal line is respectively electrically connected to at least one of the electronic elements. The first driving circuit is electrically connected to the at least one first signal line. The first driving circuit provides a first signal to at least one of the at least one first signal line. The first signal includes a first pulse. The first pulse includes a first section and a second section closely adjacent to the first section.
    Type: Application
    Filed: August 30, 2023
    Publication date: April 4, 2024
    Applicant: Innolux Corporation
    Inventors: Yi-Hung Lin, Kung-Chen Kuo, Yu-Chia Huang, Nai-Fang Hsu
  • Publication number: 20240113010
    Abstract: A semiconductor device is disclosed herein. The semiconductor device includes a routing structure. The routing structure has an intermediate conductive routing layer. The intermediate conductive routing layer includes a first mesh conductive layer formed in a predetermined second region of the semiconductor device and a second mesh conductive layer formed in a predetermined first region of the semiconductor device. The first mesh conductive layer and the second mesh conductive layer are electrically isolated from each other. The intermediate conductive routing layer further includes multiple first conductive islands formed in the predetermined first region and multiple second conductive islands formed in the predetermined second region.
    Type: Application
    Filed: September 20, 2023
    Publication date: April 4, 2024
    Inventors: Po-Hsien Huang, Yu-Huei Lee, Hsin-Hung Lin, Chun-Yuan Shih, Lien-Chieh Yu
  • Publication number: 20240107691
    Abstract: A display device includes first and second display modules and first and second turning pieces that include a first coupling piece, a first turning piece, a second turning piece, and a third turning piece, a second coupling piece and a guiding device. When the first and second display modules are switched between folding and unfolding, the first turning piece pivots relative to the first coupling piece and the second turning piece, and the third turning piece pivots relative to the second coupling piece and the second turning piece. When the display module is switched from folded to unfolded, the other side of the first display module relative to the side is pulled, the side of the first display module is guided by one end of the guiding device and slides to the other end, the first and second display modules are symmetrically unfolded with the side edge as the center.
    Type: Application
    Filed: December 8, 2023
    Publication date: March 28, 2024
    Inventors: CHIEN-FENG CHANG, TSUNG-HUAI LEE, YU-HUNG HSIAO, CHAN-PENG LIN, SHANG-CHIEN WU
  • Publication number: 20240106223
    Abstract: An electrostatic discharge (ESD) protection circuit includes a first and second diode in a semiconductor wafer, an ESD clamp circuit and a first conductive structure on a backside of a semiconductor wafer. The first diode is coupled between an input output (IO) pad and a first node. The second diode is coupled to the first diode, and coupled between the IO pad and a second node. The ESD clamp circuit is in the semiconductor wafer, coupled to the first and second node, and between the first and second diode. The ESD clamp circuit includes a first signal tap region in the semiconductor wafer that is coupled to a reference voltage supply. The second diode is coupled to and configured to share the first signal tap region with the ESD clamp circuit. The first conductive structure is configured to provide a reference voltage to the first signal tap region.
    Type: Application
    Filed: November 24, 2023
    Publication date: March 28, 2024
    Inventors: Yu-Hung YEH, Wun-Jie LIN, Jam-Wem LEE
  • Publication number: 20240097351
    Abstract: The present disclosure provides an antenna system, which includes a defected ground structure board and an antenna structure board. The defected ground structure board includes a first insulating plate and a defected ground structure layer, and the defected ground structure layer is disposed on the first insulating plate. The antenna structure board is disposed on the defected ground structure board. The antenna structure board includes at least one antenna body and a second insulating plate, the at least one antenna body is disposed on the second insulating plate, and the second insulating plate is disposed on the defected ground structure layer.
    Type: Application
    Filed: December 19, 2022
    Publication date: March 21, 2024
    Inventors: Hsin Hung LIN, Yu Shu TAI, Wei Chen CHENG
  • Publication number: 20240096781
    Abstract: A package structure including a semiconductor die, a redistribution circuit structure and an electronic device is provided. The semiconductor die is laterally encapsulated by an insulating encapsulation. The redistribution circuit structure is disposed on the semiconductor die and the insulating encapsulation. The redistribution circuit structure includes a colored dielectric layer, inter-dielectric layers and redistribution conductive layers embedded in the inter-dielectric layers. The electronic device is disposed over the colored dielectric layer and electrically connected to the redistribution circuit structure.
    Type: Application
    Filed: March 20, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Ti Lu, Hao-Yi Tsai, Chia-Hung Liu, Yu-Hsiang Hu, Hsiu-Jen Lin, Tzuan-Horng Liu, Chih-Hao Chang, Bo-Jiun Lin, Shih-Wei Chen, Hung-Chun Cho, Pei-Rong Ni, Hsin-Wei Huang, Zheng-Gang Tsai, Tai-You Liu, Po-Chang Shih, Yu-Ting Huang
  • Publication number: 20240096830
    Abstract: A method includes forming a first sealing layer at a first edge region of a first wafer; and bonding the first wafer to a second wafer to form a wafer stack. At a time after the bonding, the first sealing layer is between the first edge region of the first wafer and a second edge region of the second wafer, with the first edge region and the second edge region comprising bevels. An edge trimming process is then performed on the wafer stack. After the edge trimming process, the second edge region of the second wafer is at least partially removed, and a portion of the first sealing layer is left as a part of the wafer stack. An interconnect structure is formed as a part of the second wafer. The interconnect structure includes redistribution lines electrically connected to integrated circuit devices in the second wafer.
    Type: Application
    Filed: January 9, 2023
    Publication date: March 21, 2024
    Inventors: Yu-Yi Huang, Yu-Hung Lin, Wei-Ming Wang, Chen Chen, Shih-Peng Tai, Kuo-Chung Yee