Patents by Inventor Yu-Lin Chu

Yu-Lin Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240170341
    Abstract: Semiconductor devices and methods of manufacture are discussed. In an embodiment, a method of manufacturing a semiconductor device includes: forming first nanostructures from a first material over a substrate; forming second nanostructures from a second material different from the first material over the substrate, wherein the first nanostructures and the second nanostructures alternate vertically above the substrate; removing the first nanostructures; after the removing the first nanostructures forming an interposer in between the second nanostructures; after the forming the interposer forming a first source/drain region over the substrate and in direct physical contact with the second nanostructures; and removing the interposer exposing surfaces of each of the second nanostructures.
    Type: Application
    Filed: January 10, 2023
    Publication date: May 23, 2024
    Inventors: Yu-Ming Chen, Tsung-Lin Lee, Chia-Ho Chu, Sung-En Lin, Sen-Hong Syue
  • Publication number: 20240150656
    Abstract: A liquid crystal polymer, composition, liquid crystal polymer film, laminated material and method of forming liquid crystal polymer film are provided. The liquid crystal polymer includes a first repeating unit, a second repeating unit, a third repeating unit, a fourth repeating unit, and a fifth repeating unit. The first repeating unit has a structure of Formula (I), the second repeating unit has a structure of Formula (II), the third repeating unit has a structure of Formula (III), the fourth repeating unit has a structure of Formula (IV), and the fifth repeating unit has a structure of Formula (V), a structure of Formula (VI), or a structure of Formula (VII) wherein A1, A2, A3, A4, X1, Z1, R1, R2, R3 and Q are as defined in the specification.
    Type: Application
    Filed: September 22, 2023
    Publication date: May 9, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu-Lin CHU, Jen-Chun CHIU, Po-Hsien HO, Yu-Min HAN, Meng-Hsin CHEN, Chih-Hsiang LIN
  • Publication number: 20240124706
    Abstract: A liquid crystal polymer, composition, liquid crystal polymer film, laminated material and method of forming liquid crystal polymer film are provided. The liquid crystal polymer includes a first repeating unit, a second repeating unit, a third repeating unit, and a fourth repeating unit. The first repeating unit has a structure of Formula (I), the second repeating unit has a structure of Formula (II), the third repeating unit has a structure of Formula (III), and the fourth repeating unit has a structure of Formula (IV), a structure of Formula (V) or a structure of Formula (VI) wherein A1, A2, A3, Z1, R1, R2, R3 and Q are as defined in the specification.
    Type: Application
    Filed: September 22, 2023
    Publication date: April 18, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu-Lin CHU, Jen-Chun CHIU, Po- Hsien HO, Yu-Min HAN, Meng-Hsin CHEN, Chih-Hsiang LIN
  • Patent number: 11961834
    Abstract: A semiconductor device includes a first diode, a second diode, a clamp circuit and a third diode. The first diode is coupled between an input/output (I/O) pad and a first voltage terminal. The second diode is coupled with the first diode, the I/O pad and a second voltage terminal. The clamp circuit is coupled between the first voltage terminal and the second voltage terminal. The second diode and the clamp circuit are configured to direct a first part of an electrostatic discharge (ESD) current flowing between the I/O pad and the first voltage terminal. The third diode, coupled to the first voltage terminal, and the second diode include a first semiconductor structure configured to direct a second part of the ESD current flowing between the I/O pad and the first voltage terminal.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Lin Peng, Li-Wei Chu, Ming-Fu Tsai, Jam-Wem Lee, Yu-Ti Su
  • Publication number: 20240120313
    Abstract: A chip package structure is provided. The chip package structure includes a chip. The chip package structure includes a conductive ring-like structure over and electrically insulated from the chip. The conductive ring-like structure surrounds a central region of the chip. The chip package structure includes a first solder structure over the conductive ring-like structure. The first solder structure and the conductive ring-like structure are made of different materials.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 11, 2024
    Inventors: Sheng-Yao YANG, Ling-Wei LI, Yu-Jui WU, Cheng-Lin HUANG, Chien-Chen LI, Lieh-Chuan CHEN, Che-Jung CHU, Kuo-Chio LIU
  • Patent number: 11929363
    Abstract: In some embodiments, a semiconductor device is provided, including a first doped region of a first conductivity type configured as a first terminal of a first diode, a second doped region of a second conductivity type configured as a second terminal of the first diode, wherein the first and second doped regions are coupled to a first voltage terminal; a first well of the first conductivity type surrounding the first and second doped regions in a layout view; a third doped region of the first conductivity type configured as a first terminal, coupled to an input/output pad, of a second diode; and a second well of the second conductivity type surrounding the third doped region in the layout view. The second and third doped regions, the first well, and the second well are configured as a first electrostatic discharge path between the I/O pad and the first voltage terminal.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: March 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Lin Peng, Li-Wei Chu, Ming-Fu Tsai, Jam-Wem Lee, Yu-Ti Su
  • Patent number: 11866632
    Abstract: Liquid-crystal polymer is composed of the following repeating units: 10 mol % to 35 mol % of 10 mol % to 35 mol % of 10 mol % to 50 mol % of and 10 mol % to 40 mol % of 10 mol % to 40 mol % of or a combination thereof. Each of AR1, AR2, AR3, and AR4 is independently AR5 or AR5-Z-AR6, in which each of AR5 and AR6 is independently or a combination thereof, and Z is —O—, or C1-5 alkylene group. Each of X and Y is independently H, C1-5 alkyl group, CF3, or wherein R2 is H, CH3, CH(CH3)2, C(CH3)3, CF3, or n=1 to 4; and wherein R1 is C1-5 alkylene group.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: January 9, 2024
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu-Lin Chu, Jen-Chun Chiu, Zu-Chiang Gu, Po-Hsien Ho, Meng-Hsin Chen, Chih-Hsiang Lin
  • Publication number: 20230378162
    Abstract: In an integrated circuit (IC) fabrication process, devices or sub-circuits are fabricated in respective first and second electrical isolation regions. A back-to-back (B2B) diodes sub-circuit is fabricated in a third electrical isolation region, which includes a first diode whose cathode is connected with a first terminal and whose anode is connected with a second terminal, and a second diode whose anode is connected with the first terminal and whose cathode is connected with the second terminal. Electrostatic discharge protection is provided to the first and second electrical isolation regions by electrically connecting the first terminal of the B2B diodes sub-circuit with a VSS power supply terminal of the first device or sub-circuit and the second terminal of the B2B diodes sub-circuit with a VSS power supply terminal of the second device or sub-circuit. Thereafter, the first device or sub-circuit and the second device or sub-circuit are electrically connected.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company LTD
    Inventors: Hsi-Yu Kuo, Tsung-Yuan Chen, Yu-Lin Chu, Chih-Wei Hsu
  • Patent number: 11764206
    Abstract: In an integrated circuit (IC) fabrication process, devices or sub-circuits are fabricated in respective first and second electrical isolation regions. A back-to-back (B2B) diodes sub-circuit is fabricated in a third electrical isolation region, which includes a first diode whose cathode is connected with a first terminal and whose anode is connected with a second terminal, and a second diode whose anode is connected with the first terminal and whose cathode is connected with the second terminal. Electrostatic discharge protection is provided to the first and second electrical isolation regions by electrically connecting the first terminal of the B2B diodes sub-circuit with a VSS power supply terminal of the first device or sub-circuit and the second terminal of the B2B diodes sub-circuit with a VSS power supply terminal of the second device or sub-circuit. Thereafter, the first device or sub-circuit and the second device or sub-circuit are electrically connected.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: September 19, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, LTD.
    Inventors: Hsi-Yu Kuo, Yu-Lin Chu, Tsung-Yuan Chen, Chih-Wei Hsu
  • Publication number: 20230154918
    Abstract: In an integrated circuit (IC) fabrication process, devices or sub-circuits are fabricated in respective first and second electrical isolation regions. A back-to-back (B2B) diodes sub-circuit is fabricated in a third electrical isolation region, which includes a first diode whose cathode is connected with a first terminal and whose anode is connected with a second terminal, and a second diode whose anode is connected with the first terminal and whose cathode is connected with the second terminal. Electrostatic discharge protection is provided to the first and second electrical isolation regions by electrically connecting the first terminal of the B2B diodes sub-circuit with a VSS power supply terminal of the first device or sub-circuit and the second terminal of the B2B diodes sub-circuit with a VSS power supply terminal of the second device or sub-circuit. Thereafter, the first device or sub-circuit and the second device or sub-circuit are electrically connected.
    Type: Application
    Filed: January 24, 2022
    Publication date: May 18, 2023
    Inventors: Hsi-Yu Kuo, Yu-Lin Chu, Tsung-Yuan Chen, Chih-Wei Hsu
  • Patent number: 11572438
    Abstract: A liquid-crystal polymer includes at least one repeating unit having a spiro structure, and the repeating unit occupies 1 mol % to 20 mol % of the liquid-crystal polymer. The liquid-crystal polymer is composed of the following repeating units: 1 mol % to 20 mol % of 10 mol % to 35 mol % of 10 mol % to 35 mol % of 10 mol % to 50 mol % of and 10 mol % to 40 mol % of AR1 is wherein each of ring R and ring S is independently a C3-20 ring, ring R and ring S share a carbon atom, and each of K1 and K2 is independently a C5-20 conjugated system. Each of AR2, AR3, AR4, and AR5 is independently AR6 or AR6—Z—AR7.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: February 7, 2023
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu-Lin Chu, Jen-Chun Chiu, Zu-Chiang Gu, Po-Hsien Ho, Meng-Hsin Chen, Chih-Hsiang Lin
  • Publication number: 20220415717
    Abstract: A method of detecting or monitoring process electrical charge produced during fabrication of an integrated circuit (IC) on a semiconductor wafer includes fabricating a process charge detection circuit on or in the semiconductor wafer, including: a victim isolation well, a gate oxide disposed on or in the victim isolation well, an aggressor isolation well electrically connected with the victim isolation well via the gate oxide, a victim antenna electrically connected with the victim isolation well and together with the victim isolation well defining a victim RC time constant, and an aggressor antenna electrically connected with the aggressor isolation well and together with the aggressor isolation well defining an aggressor RC time constant that is different from the victim RC time constant. Process charge is detected using the process charge detection circuit. The detecting comprises measuring an electrical parameter of the gate oxide.
    Type: Application
    Filed: February 14, 2022
    Publication date: December 29, 2022
    Inventors: Hsi-Yu Kuo, Yu-Lin Chu
  • Patent number: 11450657
    Abstract: A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes a substrate, a first well, a second well and doped regions. The substrate has heavily doped and lightly doped regions over the heavily doped region. The first wells are disposed in the lightly doped region and arranged as an array. The first wells have a conductive type opposite to a conductive type of the heavily doped and lightly doped regions. The second well is disposed in the substrate over the lightly doped region, and has an active region defined by an isolation structure. The first wells are overlapped with the second well. Top ends of the first wells are lower than a bottom end of the second well. The doped regions are separately located in the active region, and have a conductive type opposite to a conductive type of the second well.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: September 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Hsi-Yu Kuo, Yu-Lin Chu
  • Patent number: 10980399
    Abstract: A medical instrument includes an instrument body and an operating mechanism. The instrument body has a window portion having a light permeable segment. The operating mechanism includes an indicator unit and an operating unit. The indicator unit is disposed in the window portion, and is changeable between a detectable state where the indicator unit is detectable through the light permeable segment of the window portion and a non-detectable state where the indicator unit is non-detectable through the light permeable segment. The operating unit is connected to the indicator unit and operable to change the indicator unit between the detectable and non-detectable states. An endoscopy system including the medical instrument is also disclosed.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: April 20, 2021
    Assignee: HIWIN TECHNOLOGIESCORP.
    Inventors: Wei-Lun Lin, Zong-Sian Jiang, Hung-Chuan Hsu, Yu-Lin Chu
  • Publication number: 20210002554
    Abstract: Liquid-crystal polymer is composed of the following repeating units: 10 mol % to 35 mol % of 10 mol % to 35 mol % of 10 mol % to 50 mol % of and 10 mol % to 40 mol % of 10 mol % to 40 mol % of or a combination thereof. Each of AR1, AR2, AR3, and AR4 is independently AR5 or AR5-Z-AR6, in which each of AR5 and AR6 is independently or a combination thereof, and Z is —O—, or C1-5 alkylene group. Each of X and Y is independently H, C1-5 alkyl group, CF3, or wherein R2 is H, CH3, CH(CH3)2, C(CH3)3, CF3, or n=1 to 4 ; and wherein R1 is C1-5 alkylene group.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 7, 2021
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu-Lin CHU, Jen-Chun CHIU, Zu-Chiang GU, Po-Hsien HO, Meng-Hsin CHEN, Chih-Hsiang LIN
  • Publication number: 20210002555
    Abstract: A liquid-crystal polymer includes at least one repeating unit having a spiro structure, and the repeating unit occupies 1 mol % to 20 mol % of the liquid-crystal polymer. The liquid-crystal polymer is composed of the following repeating units: 1 mol % to 20 mol % of 10 mol % to 35 mol % of 10 mol % to 35 mol % of 10 mol % to 50 mol % of and 10 mol % to 40 mol % of AR1 is wherein each of ring R and ring S is independently a C3-20 ring, ring R and ring S share a carbon atom, and each of K1 and K2 is independently a C5-20 conjugated system. Each of AR2, AR3, AR4, and AR5 is independently AR6 or AR6—Z—AR7.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 7, 2021
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu-Lin CHU, Jen-Chun CHIU, Zu-Chiang GU, Po-Hsien HO, Meng-Hsin CHEN, Chih-Hsiang LIN
  • Patent number: 10856944
    Abstract: A triaxial motion device includes first, second and third bases, first and second power sources, and a workpiece positioning member. The first power source is disposed on the first base and has a first driving shaft. The second base is connected with the first driving shaft through a cannular rotary shaft in a way that the second base is rotatable about a first axis. The second power source is disposed on the first base and has a second driving shaft penetrating through the cannular rotary shaft. The third base is connected with the second driving shaft in a way that the third base is rotatable about a second axis perpendicular to the first axis. The workpiece positioning member is disposed on the third base and rotatable about a third axis perpendicular to the second axis. Therefore, the triaxial motion device has small volume and performs highly precise motion.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: December 8, 2020
    Assignee: Hiwin Technologies Corp.
    Inventor: Yu-Lin Chu
  • Publication number: 20200312837
    Abstract: A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes a substrate, a first well, a second well and doped regions. The substrate has heavily doped and lightly doped regions over the heavily doped region. The first wells are disposed in the lightly doped region and arranged as an array. The first wells have a conductive type opposite to a conductive type of the heavily doped and lightly doped regions. The second well is disposed in the substrate over the lightly doped region, and has an active region defined by an isolation structure. The first wells are overlapped with the second well. Top ends of the first wells are lower than a bottom end of the second well. The doped regions are separately located in the active region, and have a conductive type opposite to a conductive type of the second well.
    Type: Application
    Filed: June 12, 2020
    Publication date: October 1, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsi-Yu Kuo, Yu-Lin Chu
  • Patent number: 10751873
    Abstract: A robotic arm includes a first driving source and a second driving source mounted on a base frame, a first transmission link driven by the first driving source to turn around a first axis, a second transmission link driven by the second driving source to turn around a second axis that is parallel to the first axis, a third transmission link pivoted to the first transmission link, a first driven link pivoted to the second transmission link, a second driven link pivotally coupled between the first driven link and the base frame, a third driven link pivotally connected with the first and second driven link, and a fourth driven link pivotally coupled between the third driven link and the third transmission link. Thus, the robotic arm of the invention has a compact size and can achieve multi-degree of freedom motion.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 25, 2020
    Assignee: HIWIN TECHNOLOGIES CORP.
    Inventors: Ren-Jeng Wang, Cheng-Chin Chen, Yu-Lin Chu
  • Patent number: 10685956
    Abstract: A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes a substrate, a first well, a second well, and first and second doped regions. The substrate has heavily doped and lightly doped regions. The lightly doped region is disposed over the heavily doped region. The first well is disposed in the lightly doped region. The first well has a conductive type complementary to a conductive type of the heavily doped and lightly doped regions. The second well is disposed in the substrate over the lightly doped region. A location of the first well overlaps a location of the second well. The first and the second doped regions are located in the second well within the active region, and spaced apart from each other. The first and the second doped regions have a same conductive type complementary to a conductive type of the second well.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: June 16, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsi-Yu Kuo, Yu-Lin Chu