Patents by Inventor Yu-Ming Lin

Yu-Ming Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240021726
    Abstract: A device includes a substrate, gate stacks, source/drain (S/D) features over the substrate, S/D contacts over the S/D features, and one or more dielectric layers over the gate stacks and the S/D contacts. A via structure penetrates the one or more dielectric layers and electrically contacts one of the gate stacks and the S/D contacts. And a ferroelectric (FE) stack is over the via structure and directly contacting the via structure, wherein the FE stack includes an FE feature and a top electrode over the FE feature.
    Type: Application
    Filed: July 26, 2023
    Publication date: January 18, 2024
    Inventors: Chia-Hao Chang, Lin-Yu Huang, Han-Jong Chia, Bo-Feng Young, Yu-Ming Lin
  • Publication number: 20240021682
    Abstract: A method includes forming a dummy gate structure over a substrate; forming a source/drain structure over the substrate; replacing the dummy gate structure with a metal gate structure; forming a protection cap over the metal gate structure; forming a source/drain contact over the source/drain structure; performing a selective deposition process to form a first etch stop layer on the protection cap, in which the selective deposition process has a faster deposition rate on the protection cap than on the source/drain contact; depositing a second etch stop layer over the first etch stop layer the source/drain contact; etching the second etch stop layer to form an opening; and forming a via contact in the opening.
    Type: Application
    Filed: July 14, 2023
    Publication date: January 18, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Li-Zhen YU, Chia-Hao CHANG, Cheng-Chi CHUANG, Yu-Ming LIN, Chih-Hao WANG
  • Publication number: 20240015985
    Abstract: A semiconductor chip including a semiconductor substrate, an interconnect structure and a memory cell array is provided. The semiconductor substrate includes a logic circuit. The interconnect structure is disposed on the semiconductor substrate and electrically connected to the logic circuit, and the interconnect structure includes stacked interlayer dielectric layers and interconnect wirings embedded in the stacked interlayer dielectric layers. The memory cell array is embedded in the stacked interlayer dielectric layers. The memory cell array includes driving transistors and memory devices, and the memory devices are electrically connected the driving transistors through the interconnect wirings.
    Type: Application
    Filed: September 21, 2023
    Publication date: January 11, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-Feng Young, Sai-Hooi Yeong, Yu-Ming Lin, Chih-Yu Chang, Han-Jong Chia
  • Patent number: 11869766
    Abstract: A method includes: providing a bottom layer; forming a first transistor over a substrate; forming a bottom electrode over the transistor; depositing a first seed layer over the bottom electrode; performing a surface treatment on the first seed layer, wherein after the surface treatment the first seed layer includes at least one of a tetragonal crystal phase and an orthorhombic crystal phase; depositing a dielectric layer over the bottom layer adjacent to the first seed layer, the dielectric layer including an amorphous crystal phase; depositing an upper layer over the dielectric layer; performing a thermal operation on the dielectric layer to thereby convert the dielectric layer into a ferroelectric layer.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: January 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun-Chieh Lu, Sai-Hooi Yeong, Yu-Ming Lin
  • Publication number: 20240006538
    Abstract: A method of forming a semiconductor device is provided. A gate electrode is formed within an insulating layer that overlies a substrate. A gate dielectric layer is formed over the gate electrode. A first oxide semiconductor layer is formed over the gate dielectric layer. A dielectric layer is formed over the first oxide semiconductor layer. The dielectric layer and the first oxide semiconductor layer are patterned, so as to form first and second openings that expose portions of the gate dielectric layer. An interfacial layer is conformally formed on sidewalls and bottoms of the first and second openings. A second oxide semiconductor layer is formed over the interfacial layer in the first and second openings. A metal layer is formed over the second oxide semiconductor layer in the first and second openings.
    Type: Application
    Filed: July 3, 2022
    Publication date: January 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wu-Wei Tsai, Po-Ting Lin, Kai-Wen Cheng, Sai-Hooi Yeong, Han-Ting Tsai, Ya-Ling Lee, Hai-Ching Chen, Chung-Te Lin, Yu-Ming Lin
  • Publication number: 20240008287
    Abstract: A memory device and a manufacturing method thereof is described. The memory device includes a transistor structure over a substrate and a ferroelectric capacitor structure electrically connected with the transistor structure. The ferroelectric capacitor structure includes a top electrode layer, a bottom electrode layer and a ferroelectric stack sandwiched there-between. The ferroelectric stack includes a first ferroelectric layer, a first stabilizing layer, and one of a second ferroelectric layer or a second stabilizing layer. Materials of the first stabilizing layer and a second stabilizing layer include a metal oxide material.
    Type: Application
    Filed: July 4, 2022
    Publication date: January 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Ting Lin, Wei-Chih Wen, Kai-Wen Cheng, Wu-Wei Tsai, Yu-Ming Hsiang, Yan-Yi Chen, Hai-Ching Chen, Yu-Ming Lin, Chung-Te Lin
  • Patent number: 11864392
    Abstract: A magnetic tunnel junction memory device includes a vertical stack of magnetic tunnel junction NOR strings located over a substrate. Each magnetic tunnel junction NOR string includes a respective semiconductor material layer that contains a semiconductor source region, a plurality of semiconductor channels, and a plurality of semiconductor drain regions, a plurality of magnetic tunnel junction memory cells having a respective first electrode that is located on a respective one of the plurality of semiconductor drain regions, and a metallic bit line contacting each second electrode of the plurality of magnetic tunnel junction memory cells. The vertical stack of magnetic tunnel junction NOR strings may be repeated along a channel direction to provide a three-dimensional magnetic tunnel junction memory device.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Han-Jong Chia, Bo-Feng Young, Sai-Hooi Yeong, Chenchen Jacob Wang, Meng-Han Lin, Yu-Ming Lin
  • Patent number: 11862219
    Abstract: A memory cell includes a write bit line, a read word line, a write transistor, and a read transistor. The write transistor is coupled between the write bit line and a first node. The read transistor is coupled to the write transistor by the first node. The read transistor includes a ferroelectric layer, a drain terminal of the read transistor is coupled to the read word line, and a source terminal of the read transistor is coupled to a second node. The write transistor is configured to set a stored data value of the memory cell by a write bit line signal that adjusts a polarization state of the read transistor. The polarization state corresponds to the stored data value.
    Type: Grant
    Filed: January 19, 2023
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Bo-Feng Young, Sai-Hooi Yeong, Chao-I Wu, Chih-Yu Chang, Yu-Ming Lin
  • Patent number: 11864393
    Abstract: A memory device includes a bit line, a word line, a memory cell, select bit lines, and a controller. The memory cell includes a first transistor, data storage elements, and second transistors corresponding to the data storage elements. The first transistor includes a gate electrically coupled to the word line, a first source/drain, and a second source/drain. Each of the select bit lines is electrically coupled to a gate of a corresponding second transistor. Each data storage element and the corresponding second transistor are electrically coupled in series between the first source/drain of the first transistor and the bit line. The controller turns ON the first transistor and a selected second transistor, and, while the first transistor and the selected second transistor are turned ON, applies different voltages to the bit line to perform corresponding different operations on the data storage element coupled to the selected second transistor.
    Type: Grant
    Filed: January 19, 2023
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Meng-Han Lin, Sai-Hooi Yeong, Han-Jong Chia, Chenchen Jacob Wang, Yu-Ming Lin
  • Publication number: 20230422513
    Abstract: Various embodiments of the present disclosure provide a memory device and methods of forming the same. In one embodiment, a memory device is provided. The memory device includes a gate electrode disposed in an insulating material layer, a ferroelectric dielectric layer disposed over the gate electrode, a metal oxide semiconductor layer disposed over the ferroelectric dielectric layer, a source feature disposed over the metal oxide semiconductor layer, wherein the source feature has a first dimension, and a source extension. The source extension includes a first portion disposed over the source feature, wherein the first portion has a second dimension that is greater than the first dimension. The source extension also includes a second portion extending downwardly from the first portion to an elevation that is lower than a top surface of the source feature.
    Type: Application
    Filed: June 25, 2022
    Publication date: December 28, 2023
    Inventors: Hung-Wei LI, Sai-Hooi YEONG, Chia-Ta YU, Chih-Yu CHANG, Wen-Ling LU, Yu-Chien CHIU, Ya-Yun CHENG, Mauricio MANFRINI, Yu-Ming LIN
  • Patent number: 11856786
    Abstract: An integrated circuit is provided. The integrated circuit includes a three-dimensional memory device, a first word line driving circuit and a second word line driving circuit. The three-dimensional memory device includes stacking structures separately extending along a column direction. Each stacking structure includes a stack of word lines. The stacking structures have first staircase structures at a first side and second staircase structures at a second side. The word lines extend to steps of the first and second staircase structures. The first and second word line driving circuits lie below the three-dimensional memory device, and extend along the first and second sides, respectively. Some of the word lines in each stacking structure are routed to the first word line driving circuit from a first staircase structure, and others of the word lines in each stacking structure are routed to the second word line driving circuit from a second staircase structure.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-Feng Young, Yi-Ching Liu, Sai-Hooi Yeong, Yih Wang, Yu-Ming Lin
  • Patent number: 11855208
    Abstract: A method for forming a FinFET device structure is provided. The method includes forming a fin structure extended above a substrate and forming a gate structure formed over a portion of the fin structure. The method also includes forming a source/drain (S/D) structure over the fin structure, and the S/D structure is adjacent to the gate structure. The method further includes doping an outer portion of the S/D structure to form a doped region, and the doped region includes gallium (Ga). The method includes forming a metal silicide layer over the doped region; and forming an S/D contact structure over the metal silicide layer.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Hsiung Tsai, Shahaji B. More, Cheng-Yi Peng, Yu-Ming Lin, Kuo-Feng Yu, Ziwei Fang
  • Patent number: 11856785
    Abstract: A device includes a semiconductor substrate; a first word line over the semiconductor substrate, the first word line providing a first gate electrode for a first transistor; and a second word line over the first word line. The second word line is insulated from the first word line by a first dielectric material, and the second word line providing a second gate electrode for a second transistor over the first transistor. The device further including a source line intersecting the first word line and the second word line; a bit line intersecting the first word line and the second word line; a memory film between the first word line and the source line; and a first semiconductor material between the memory film and the source line.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Ming Lin, Bo-Feng Young, Sai-Hooi Yeong, Han-Jong Chia, Chi On Chui
  • Patent number: 11852158
    Abstract: A fan including a frame and an impeller is disclosed. The frame has an air inlet and an air outlet. The impeller is disposed in the frame and includes a hub and multiple blades. Each blade has a negative pressure surface facing the air inlet, a positive pressure surface facing the air outlet, a blade root, and a blade tip opposite to the blade root. In a first region extending from the blade root to the blade tip by a first length, the negative pressure surface and the positive pressure surface are respectively a convex arc surface and a plane. In a second region extending from the blade tip to the blade root by a second length smaller than the first length, the negative pressure surface and the positive pressure surface are respectively a convex arc surface and a concave arc surface or both are convex arc surfaces.
    Type: Grant
    Filed: May 3, 2023
    Date of Patent: December 26, 2023
    Assignee: Acer Incorporated
    Inventors: Tsung-Ting Chen, Wen-Neng Liao, Cheng-Wen Hsieh, Jau-Han Ke, Kuang-Hua Lin, Yu-Ming Lin, Chun-Chieh Wang
  • Patent number: 11854866
    Abstract: In some embodiments, the present disclosure relates to a method of forming an integrated chip. The method includes forming a gate electrode over a substrate. The gate electrode is laterally separated from a dielectric by a spacer structure. A sacrificial layer is formed over a top surface of the gate electrode. A liner layer is formed along a sidewall of the spacer structure and on the sacrificial layer. The sacrificial layer is removed and a hard mask material is formed over the gate electrode. A part of the dielectric is removed to form a contact opening laterally separated from the gate electrode by the spacer structure. A conductive contact is formed within the contact opening.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Zhen Yu, Cheng-Chi Chuang, Chih-Hao Wang, Yu-Ming Lin, Lin-Yu Huang
  • Patent number: 11855144
    Abstract: A semiconductor device comprises a fin disposed on a substrate, a source/drain feature disposed over the fin, a silicide layer disposed over the source/drain feature, a seed metal layer disposed over the silicide layer and wrapping around the source/drain feature, and a metal layer disposed on the silicide layer, where the metal layer contacts the seed metal layer.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Chuan Chiu, Chia-Hao Chang, Jia-Chuan You, Tien-Lu Lin, Yu-Ming Lin, Chih-Hao Wang
  • Publication number: 20230411522
    Abstract: A ferroelectric field effect transistor (FeFET) having a double-gate structure includes a first gate electrode, a first ferroelectric material layer over the first gate electrode, a semiconductor channel layer over the first ferroelectric material layer, source and drain electrodes contacting the semiconductor channel layer, a second ferroelectric material layer over the semiconductor channel layer, and a second gate electrode over the second ferroelectric material layer.
    Type: Application
    Filed: August 8, 2023
    Publication date: December 21, 2023
    Inventors: Yen-Chieh HUANG, Song-Fu LIAO, Po-Ting LIN, Hai-Ching CHEN, Sai-Hooi YEONG, Yu-Ming LIN, Chung-Te LIN
  • Publication number: 20230413571
    Abstract: Various embodiments of the present disclosure provide a memory device and methods of forming the same. In one embodiment, a memory device is provided. The memory device includes a first oxide material having a first sidewall and a second sidewall, a first spacer layer in contact with the first sidewall of the first oxide material, the first spacer layer having a first conductivity type, a second spacer layer in contact with the second sidewall of the first oxide material, wherein the second spacer layer has the first conductivity type. The memory device also includes a channel layer having a second conductivity type that is opposite to the first conductivity type, wherein the channel layer is in contact with the first oxide material, the first spacer layer, and the second spacer layer. The memory device further includes a ferroelectric layer in contact with the channel layer.
    Type: Application
    Filed: June 15, 2022
    Publication date: December 21, 2023
    Inventors: Wen-Ling LU, Yu-Chien CHIU, Chih-Yu CHANG, Hung-Wei LI, Ya-Yun CHENG, Zhiqiang WU, Yu-Ming LIN, Mauricio MANFRINI
  • Publication number: 20230413544
    Abstract: In an embodiment, a method includes forming a multi-layer stack including alternating layers of an isolation material and a semiconductor material, patterning the multi-layer stack to form a first channel structure in a first region of the multi-layer stack, where the first channel structure includes the semiconductor material, depositing a memory film layer over the first channel structure, etching a first trench extending through a second region of the multi-layer stack to form a first dummy bit line and a first dummy source line in the second region, where the first dummy bit line and first dummy source line each include the semiconductor material, and replacing the semiconductor material of the first dummy bit line and the first dummy source line with a conductive material to form a first bit line and a first source line.
    Type: Application
    Filed: July 31, 2023
    Publication date: December 21, 2023
    Inventors: Bo-Feng Young, Sai-Hooi Yeong, Chi On Chui, Chun-Chieh Lu, Yu-Ming Lin
  • Patent number: 11849589
    Abstract: A semiconductor structure and manufacturing method thereof are provided. The semiconductor structure includes a substrate having a first surface, a first conductive region and a second conductive region at the first surface, wherein the first conductive region is apart from the second conductive region, a gate feature, wherein a top surface of the gate feature is above the first conductive region, a stack unit coupled to the first conductive region, wherein the stack unit includes a plurality of ferroelectric layers stacking with a plurality of metal layers, wherein each of the plurality of ferroelectric layers separates adjacent two metal layers.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Han-Jong Chia, Yu-Ming Lin, Zhiqiang Wu, Sai-Hooi Yeong