Patents by Inventor Yu Sheng Bai

Yu Sheng Bai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180143460
    Abstract: An apparatus comprising a polarization beam splitter optically coupled to a first light path and a second light path and configured to receive a CW light having a plurality of wavelengths, forward a first light beam of the CW light along the first light path, and forward a second light beam of the CW light along the second light path. A first multiplexer coupled to the first light path and configured to de-multiplex the first light beam into a first plurality of channels each corresponding to one of the plurality of wavelengths. A second multiplexer coupled to the second light path and configured to de-multiplex the second light beam into a second plurality of channels each corresponding to one of the plurality of wavelengths. A modulator coupled to the first multiplexer and the second multiplexer and configured to modulate the first plurality of channels and the second plurality of channels.
    Type: Application
    Filed: November 21, 2016
    Publication date: May 24, 2018
    Inventors: Yangjing Wen, Yan Cui, Xiao Shen, Yu Sheng Bai
  • Patent number: 9974163
    Abstract: A method comprising coupling a circuit to an opto-electronic package via an anisotropic conductive film (ACF), wherein the opto-electronic package is configured to communicate electrical signals via the coupling at a maximum frequency of about 10 gigahertz (GHz) to about 40 GHz. An apparatus comprising, an opto-electronic package comprising a plurality of first electrodes, and a circuit comprising a plurality of second electrodes, wherein at least one of the first electrodes is coupled to at least one of the second electrodes via an ACF, and wherein the opto-electronic package is configured to communicate electrical signals via the coupling at a maximum frequency of about 10 GHz to about 40 GHz.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 15, 2018
    Assignee: FUTUREWEI TECHNOLOGIES, INC.
    Inventors: Morgan Chen, Rongsheng Miao, Xueyan Zheng, Bo Li, Xiao Shen, Yu Sheng Bai
  • Patent number: 9964832
    Abstract: An electronic driver circuit for use with a modulator such as a segmented Mach-Zehnder Modulator (MZM) is provided. The electronic driver circuit includes a first delay buffer implemented as a first complementary metal-oxide-semiconductor (CMOS) inverter and a second delay buffer implemented as a second CMOS inverter. The second CMOS inverter follows the first CMOS inverter and has a second gate width smaller than a first gate width of the first CMOS inverter. The first CMOS inverter is configured to produce a first delayed electrical signal from a received electrical signal and the second CMOS inverter is configured to produce a second delayed electrical signal from the first delayed electrical signal produced by the first CMOS inverter.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: May 8, 2018
    Assignee: Futurewei Technologies, Inc.
    Inventors: Morgan Chen, Yifan Gu, Hungyi Lee, Liang Gu, Yen Dang, Gong Lei, Yuming Cao, Xiao Shen, Yu Sheng Bai
  • Patent number: 9939593
    Abstract: A photonic device comprising a base plate, a photonic laser coupled to the base plate, wherein the photonic laser is configured to generate a light, a lens coupled to the base plate, wherein the lens is configured to receive the light from the photonic laser, form a focused light, and pass the focused light to a reflector, and the reflector incorporated with the base plate such that the lens is positioned between the photonic laser and the reflector, wherein the reflector is configured to receive the focused light, and wherein the reflector is configured to steer a first portion of the focused light through the base plate using total internal reflection.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: April 10, 2018
    Assignee: Futurewei Technologies, Inc.
    Inventors: Rongsheng Miao, Yu Sheng Bai
  • Patent number: 9933570
    Abstract: A method for fabricating a photonic integrated circuit (PIC) comprises providing a wafer comprising an insulator layer positioned between a top semiconductor layer and a base semiconductor layer, patterning the top semiconductor layer to simultaneously define a waveguide and a first etch mask window for forming a fiber-guiding v-groove that substantially aligns to an axis of optical signal propagation of the waveguide, removing a first portion of the top semiconductor layer to form the waveguide according to the patterning, removing a second portion of the top semiconductor layer to form the first etch mask window according to the patterning, and forming the fiber-guiding v-groove according to the first etch mask window.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: April 3, 2018
    Assignee: Futurewei Technologies, Inc.
    Inventors: Zongrong Liu, Qianfan Xu, Rongsheng Miao, Hongmin Chen, Xiao Shen, Yu Sheng Bai
  • Patent number: 9874699
    Abstract: An apparatus comprises a transistor outline (TO) package comprising a TO can holder; and a TO can at least partially embedded within the TO can holder; and a mode converter coupled to the TO package. A system comprises a mode converter comprising a lens configured to convert a mode of a light from a first mode size to a second mode size, wherein the first mode size is smaller than the second mode size; a silicon photonic chip comprising a waveguide configured to communicate the light; a fiber configured to couple to the lens and the waveguide; and a substrate configured to provide a support for the silicon photonic chip.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: January 23, 2018
    Assignee: Futurewei Technologies, Inc.
    Inventors: Rongsheng Miao, Yu Sheng Bai
  • Publication number: 20180017735
    Abstract: Multiplexer and demultiplexer apparatuses are disclosed herein. In various embodiments, a demultiplexer apparatus comprises a receptacle having a collimate lens and configured to receive an inlet light, a substrate, a reflector mounted to the substrate and configured to reflect the inlet light. The reflector is either fixed or adjustable during assembly. The demultiplexer apparatus also includes a demultiplexer block coupled to the substrate and configured to receive the inlet light from the reflector and separate the inlet light into multiple wavelengths, a folding prism coupled to the substrate that receives and refracts the multiple wavelengths through the substrate, and a focal lens array coupled to the substrate to receive the focus of the multiple wavelengths.
    Type: Application
    Filed: May 18, 2017
    Publication date: January 18, 2018
    Inventors: Rongsheng Miao, Yu Sheng Bai
  • Patent number: 9838239
    Abstract: An apparatus comprising a first electrical driver configured to generate a first binary voltage signal according to first data, a second electrical driver configured to generate a second binary voltage signal according to second data, wherein the first data and the second data are different, and a first optical waveguide arm coupled to the first electrical driver and the second electrical driver, wherein the first optical waveguide arm is configured to shift a first phase of a first optical signal propagating along the first optical waveguide arm according to a first voltage difference between the first binary voltage signal and the second binary voltage signal to produce a first multi-level phase-shifted optical signal.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: December 5, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Morgan Chen, Qianfan Xu, Hungyi Lee, Yifan Gu, Liang Gu, Yen Dang, Gong Lei, Yuming Cao, Xiao Shen, Yu Sheng Bai
  • Patent number: 9819420
    Abstract: A system comprises: a polarization state aligner (PSA) comprising: an input port; a first polarization beam splitter (PBS) coupled to the input port; a first phase shifter (PS) coupled to the first PBS; a first polarization rotator (PR) coupled to the first PBS; a first beam splitter (BS) coupled to the first PS and the first PR; a first output port coupled to the first BS; and a second output port coupled to the first BS.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: November 14, 2017
    Assignee: Futurewei Technolgies, Inc.
    Inventors: Yangjing Wen, Fei Zhu, Yu Sheng Bai
  • Patent number: 9806814
    Abstract: An optical transceiver in an optical communications network, comprising a receiver configured to receive an optical signal comprising an X-polarization component and a Y-polarization component. The optical transceiver further comprises a processor coupled to the receiver and configured to determine a chromatic dispersion (CD) estimate and a local oscillator frequency offset (LOFO) estimate based on a relationship between a plurality of CD values and a plurality of LOFO values. The optical transceiver further comprises a transmitter coupled to the processor and configured to transmit the CD estimate, the LOFO estimate, and the optical signal to a downstream component in the optical communications network.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: October 31, 2017
    Assignee: Futurewei Tecnologies, Inc.
    Inventors: Murali Krishnan, Qing Guo, Fei Zhu, Yu Sheng Bai
  • Publication number: 20170269392
    Abstract: An optical modulator comprises a silicon substrate, a buried oxide (BOX) layer disposed on top of the silicon substrate, and a ridge waveguide disposed on top of the BOX layer and comprising a first n-type silicon (n-Si) slab, a first gate oxide layer coupled to the first n-Si slab, a first p-type silicon (p-Si) slab coupled to the first gate oxide layer, and a light propagation path that travels sequentially through the first n-Si slab, the first gate oxide layer, and the first p-Si slab.
    Type: Application
    Filed: June 1, 2017
    Publication date: September 21, 2017
    Inventors: Dawei Zheng, Hongbing Lei, Qianfan Xu, Xiao Shen, Yu Sheng Bai
  • Publication number: 20170254954
    Abstract: A method for fabricating a photonic integrated circuit (PIC) comprises providing a wafer comprising an insulator layer positioned between a top semiconductor layer and a base semiconductor layer, patterning the top semiconductor layer to simultaneously define a waveguide and a first etch mask window for forming a fiber-guiding v-groove that substantially aligns to an axis of optical signal propagation of the waveguide, removing a first portion of the top semiconductor layer to form the waveguide according to the patterning, removing a second portion of the top semiconductor layer to form the first etch mask window according to the patterning, and forming the fiber-guiding v-groove according to the first etch mask window.
    Type: Application
    Filed: March 1, 2016
    Publication date: September 7, 2017
    Inventors: Zongrong Liu, Qianfan Xu, Rongsheng Miao, Hongmin Chen, Xiao Shen, Yu Sheng Bai
  • Publication number: 20170254959
    Abstract: An apparatus comprises a transistor outline (TO) package comprising a TO can holder; and a TO can at least partially embedded within the TO can holder; and a mode converter coupled to the TO package. A system comprises a mode converter comprising a lens configured to convert a mode of a light from a first mode size to a second mode size, wherein the first mode size is smaller than the second mode size; a silicon photonic chip comprising a waveguide configured to communicate the light; a fiber configured to couple to the lens and the waveguide; and a substrate configured to provide a support for the silicon photonic chip.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 7, 2017
    Inventors: Rongsheng Miao, Yu Sheng Bai
  • Publication number: 20170244492
    Abstract: An apparatus comprises: a first input tap; a first optical modulator coupled to the first input tap; a first output tap coupled to the first optical modulator so that the first optical modulator is positioned between the first input tap and the first output tap; and a controller indirectly coupled to the first input tap and the first output tap.
    Type: Application
    Filed: January 24, 2017
    Publication date: August 24, 2017
    Inventors: Xueyan Zheng, Jianying Zhou, Xiao Shen, Chunlei Liao, Hongbing Lei, Hongmin Chen, Yu Sheng Bai
  • Patent number: 9733542
    Abstract: An optical modulator comprising a waveguide for propagating an optical signal comprising a proximate arm configured to communicate a proximate portion of the optical signal, and a distal arm configured to communicate a distal portion of the optical signal, a proximate diode configured to modulate the proximate portion of the optical signal, a distal diode configured to modulate the distal portion of the optical signal, and an electrical input electrically coupled to opposite signed interfaces of the proximate diode and the distal diode such that an electrical driving signal propagated along the electrical input causes an equal and opposite modulation of the proximate portion of the optical signal in the proximate arm of the waveguide and the distal portion of the optical signal in the distal arm of the waveguide.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: August 15, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventor: Yu Sheng Bai
  • Patent number: 9680574
    Abstract: An optical transceiver in an optical communications network, comprising a receiver configured to receive an optical signal comprising an X-polarization component that comprises a first frame and a Y-polarization component that comprises a second frame. The optical transceiver also comprises a processor coupled to the receiver and configured to determine, in a time domain, a phase estimate according to the first frame and the second frame, determine, in a frequency domain, a channel estimate for the optical signal according to a relationship between the first frame, the second frame, and the phase estimate, and determine a compensated optical signal according to the channel estimate. The optical transceiver further comprises a transmitter coupled to the processor and configured to transmit the compensated optical signal to a downstream component in the optical communications network.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: June 13, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Murali Krishnan, Qing Guo, Samina Chowdhury, Fei Zhu, Yu Sheng Bai
  • Publication number: 20170155448
    Abstract: An optical transceiver in an optical communications network, comprising a receiver configured to receive an optical signal comprising an X-polarization component that comprises a first frame and a Y-polarization component that comprises a second frame. The optical transceiver also comprises a processor coupled to the receiver and configured to determine, in a time domain, a phase estimate according to the first frame and the second frame, determine, in a frequency domain, a channel estimate for the optical signal according to a relationship between the first frame, the second frame, and the phase estimate, and determine a compensated optical signal according to the channel estimate. The optical transceiver further comprises a transmitter coupled to the processor and configured to transmit the compensated optical signal to a downstream component in the optical communications network.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 1, 2017
    Inventors: Murali Krishnan, Qing Guo, Samina Chowdhury, Fei Zhu, Yu Sheng Bai
  • Patent number: 9664979
    Abstract: An apparatus comprising a modulation block comprising a plurality of modulators, wherein each of the plurality of modulators comprises an optical input port and an optical output port, and wherein all of the optical input ports and all of the optical output ports are positioned on one face of the modulation block. Another apparatus comprising a modulation block comprising one or more Mach-Zehnder modulators (MZMs), wherein each MZM is coupled to an optical input port, an optical output port, and at least one electrical trace, wherein all of the optical input ports and all of the optical output ports are positioned on a first side of the modulation block, and wherein all of the electrical traces are positioned on a second side of the modulation block, and a planar lightwave circuit (PLC) coupled to the modulation block via an optical interface.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: May 30, 2017
    Assignee: Futurewei Technologies. Inc.
    Inventors: Chunlei Liao, Morgan Chen, Xiao A. Shen, Yu Sheng Bai
  • Publication number: 20170149502
    Abstract: An optical transceiver in an optical communications network, comprising a receiver configured to receive an optical signal comprising an X-polarization component and a Y-polarization component. The optical transceiver further comprises a processor coupled to the receiver and configured to determine a chromatic dispersion (CD) estimate and a local oscillator frequency offset (LOFO) estimate based on a relationship between a plurality of CD values and a plurality of LOFO values. The optical transceiver further comprises a transmitter coupled to the processor and configured to transmit the CD estimate, the LOFO estimate, and the optical signal to a downstream component in the optical communications network.
    Type: Application
    Filed: November 24, 2015
    Publication date: May 25, 2017
    Inventors: Murali Krishnan, Qing Guo, Fei Zhu, Yu Sheng Bai
  • Patent number: 9654219
    Abstract: A first optical transceiver node comprises: a laser configured to emit an input optical signal; a first splitter coupled to the laser and configured to split the input optical signal into a local oscillator (LO) optical signal and an unmodulated optical signal; and a receiver coupled to the first splitter and configured to: receive the LO optical signal from the first splitter; receive a modulated optical signal from a second optical transceiver node, wherein the modulated optical signal is a modulated version of the unmodulated optical signal; and perform phase noise cancellation of the modulated optical signal using the LO optical signal.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: May 16, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Zhihong Li, Fei Zhu, Yu Sheng Bai