Patents by Inventor Yu-Sheng Chen

Yu-Sheng Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125003
    Abstract: A method of growing a single crystal ingot includes growing a single crystal silicon ingot from a silicon melt in a crucible within an inner chamber, adding a volatile dopant into a feed tube, positioning the feed tube within an inner chamber at a first height relative to a surface of the melt, adjusting the feed tube within the inner chamber to a second height at a speed rate, and heating the volatile dopant to form a gaseous dopant as the feed tube is moved from the first height to the second height at the speed rate. Each of the second height and the speed rate are selected to control a vaporization rate of the volatile dopant. The method also includes introducing dopant species into the melt while growing the ingot by contacting the surface of the melt with the gaseous dopant.
    Type: Application
    Filed: October 13, 2022
    Publication date: April 18, 2024
    Inventors: Chieh HU, Hsien-Ta TSENG, Chun-Sheng WU, William Lynn LUTER, Liang-Chin CHEN, Sumeet BHAGAVAT, Carissima Marie HUDSON, Yu-Chiao Wu
  • Publication number: 20240125004
    Abstract: A method of growing a single crystal ingot includes growing a single crystal silicon ingot from a silicon melt in a crucible within an inner chamber, adding a volatile dopant into a feed tube, positioning the feed tube within an inner chamber at a first height relative to a surface of the melt, adjusting the feed tube within the inner chamber to a second height at a speed rate, and heating the volatile dopant to form a gaseous dopant as the feed tube is moved from the first height to the second height at the speed rate. Each of the second height and the speed rate are selected to control a vaporization rate of the volatile dopant. The method also includes introducing dopant species into the melt while growing the ingot by contacting the surface of the melt with the gaseous dopant.
    Type: Application
    Filed: October 13, 2022
    Publication date: April 18, 2024
    Inventors: Chieh HU, Hsien-Ta TSENG, Chun-Sheng WU, William Lynn LUTER, Liang-Chin CHEN, Sumeet BHAGAVAT, Carissima Marie HUDSON, Yu-Chiao Wu
  • Publication number: 20240128626
    Abstract: A transmission device includes a daisy chain structure composed of at least three daisy chain units arranged periodically and continuously. Each of the daisy chain units includes first, second and third conductive lines, and first and second conductive pillars. The first and second conductive lines at a first layer extend along a first direction and are discontinuously arranged. The third conductive line at a second layer extends along the first direction and is substantially parallel to the first and second conductive lines. The first conductive pillar extends in a second direction. The second direction is different from the first direction. A first part of the first conductive pillar is connected to the first and third conductive lines. The second conductive pillar extends in the second direction. A first part of the second conductive pillar is connected to the second and third conductive lines.
    Type: Application
    Filed: November 25, 2022
    Publication date: April 18, 2024
    Applicants: UNIMICRON TECHNOLOGY CORP., National Taiwan University
    Inventors: Yu-Kuang WANG, Ruey-Beei Wu, Ching-Sheng Chen, Chun-Jui Huang, Wei-Yu Liao, Chi-Min Chang
  • Patent number: 11963369
    Abstract: The present disclosure relates to an integrated circuit. The integrated circuit has a plurality of bit-line stacks disposed over a substrate and respectively including a plurality of bit-lines stacked onto one another. A data storage structure is over the plurality of bit-line stacks and a selector is over the data storage structure. A word-line is over the selector. The selector is configured to selectively allow current to pass between the plurality of bit-lines and the word-line. The plurality of bit-line stacks include a first bit-line stack, a second bit-line stack, and a third bit-line stack. The first and third bit-line stacks are closest bit-line stacks to opposing sides of the second bit-line stack. The second bit-line stack is separated from the first bit-line stack by a first distance and is further separated from the third bit-line stack by a second distance larger than the first distance.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Li Chiang, Chao-Ching Cheng, Jung-Piao Chiu, Tzu-Chiang Chen, Yu-Sheng Chen
  • Publication number: 20240111210
    Abstract: A method of manufacturing a semiconductor device includes the following steps. A photoresist layer is formed over a material layer on a substrate. The photoresist layer has a composition including a solvent and a first photo-active compound dissolved in the solvent. The first photo-active compound is represented by the following formula (A1) or formula (A2): Zr12O8(OH)14(RCO2)18 ??Formula (A1); or Hf6O4(OH)6(RCO2)10 ??Formula (A2). R in the formula (A1) and R in the formula (A2) each include one of the following formulae (1) to (6): The photoresist layer is patterned. The material layer is etched using the photoresist layer as an etch mask.
    Type: Application
    Filed: May 9, 2023
    Publication date: April 4, 2024
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TSING HUA UNIVERSITY
    Inventors: Jui-Hsiung LIU, Pin-Chia LIAO, Ting-An LIN, Ting-An SHIH, Yu-Fang TSENG, Burn Jeng LIN, Tsai-Sheng GAU, Po-Hsiung CHEN, Po-Wen CHIU
  • Publication number: 20240112912
    Abstract: A method of manufacturing a semiconductor device includes the following steps. A photoresist layer is formed over a material layer on a substrate. The photoresist layer has a composition including a solvent and a first photo-active compound dissolved in the solvent. The first photo-active compound is represented by the following formula (Al) or formula (A2): Zr12O8(OH)14(RCO2)18??Formula (A1); or Hf6O4(OH)6(RCO2)10??Formula (A2). R in the formula (A1) and R in the formula (A2) each include one of the following formulae (1) to (6): The photoresist layer is patterned. The material layer is etched using the photoresist layer as an etch mask.
    Type: Application
    Filed: July 28, 2023
    Publication date: April 4, 2024
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TSING HUA UNIVERSITY
    Inventors: Jui-Hsiung LIU, Yu-Fang TSENG, Pin-Chia LIAO, Burn Jeng LIN, Tsai-Sheng GAU, Po-Hsiung CHEN, Po-Wen CHIU
  • Publication number: 20240102194
    Abstract: A plating system and a method thereof are disclosed. The plating system performs a N-stage plating drilling filling process in which a M-th stage plating drilling filling process with a M-th current density is performed on a hole of a substrate for a M-th plating time to form a M-th plating layer on the to-be-plated layer, wherein N is a positive integer equal to or greater than 3, and M is a positive integer positive integer in a range of 1 to N. Therefore, the technical effect of providing a higher drilling filling rate than conventional plating filling technology under a condition that a total thickness of plating layers is fixed can be achieved.
    Type: Application
    Filed: August 7, 2023
    Publication date: March 28, 2024
    Inventors: Cheng-EN HO, Yu-Lian CHEN, Cheng-Chi WANG, Yu-Jen CHANG, Yung-Sheng LU, Cheng-Yu LEE, Yu-Ming LIN
  • Publication number: 20240106757
    Abstract: A method of wireless signal transmission management includes transmitting a plurality of data packets to tethering equipment from user equipment to tethering equipment, determining a size of each of the plurality of data packets by the tethering equipment, designating data packets of the plurality of data packets having a specific range of sizes as control signal packets by the tethering equipment, and prioritizing in transmitting the control signal packets to a cellular network by the tethering equipment.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 28, 2024
    Applicant: MEDIATEK INC.
    Inventors: Ching-Hao Lee, Yi-Lun Chen, Ho-Wen Pu, Yu-Yu Hung, Jun-Yi Li, Ting-Sheng Lo
  • Patent number: 11942146
    Abstract: Various embodiments provide methods for configuring a phase-change random-access memory (PCRAM) structures, such as PCRAM operating in a single-level-cell (SLC) mode or a multi-level-cell (MLC) mode. Various embodiments may support a PCRAM structure being operating in a SLC mode for lower power and a MLC mode for lower variability. Various embodiments may support a PCRAM structure being operating in a SLC mode or a MLC mode based at least in part on an error tolerance for a neural network layer.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Win-San Khwa, Kerem Akarvardar, Yu-Sheng Chen
  • Publication number: 20240092415
    Abstract: An HOD device, comprising: a framework; covering material, covering the frame work; at least one conductive region, provided on or in the covering material; wherein the conductive region is coupled to a capacitance detection circuit or a predetermined voltage level. The HOD device can be a vehicle control device such as a steering wheel. The conductive region comprises conductive wires which can be threads of the covering material. By this way, the arrangements of the conductive wires can be changed corresponding to the size or the shape of the frame work or any other requirements. Also, the interference caused by unstable factors can be improved since the conductive wires can be coupled to a ground source of the vehicle to provide a short capacitance sensing path.
    Type: Application
    Filed: September 21, 2022
    Publication date: March 21, 2024
    Applicant: PixArt Imaging Inc.
    Inventors: Chin-Hua Hu, Ching-Shun Chen, Yu-Han Chen, Yu-Sheng Lin
  • Publication number: 20240088026
    Abstract: A semiconductor device according to embodiments of the present disclosure includes a first die including a first bonding layer and a second die including a second hybrid bonding layer. The first bonding layer includes a first dielectric layer and a first metal coil embedded in the first dielectric layer. The second bonding layer includes a second dielectric layer and a second metal coil embedded in the second dielectric layer. The second hybrid bonding layer is bonded to the first hybrid bonding layer such that the first dielectric layer is bonded to the second dielectric layer and the first metal coil is bonded to the second metal coil.
    Type: Application
    Filed: January 17, 2023
    Publication date: March 14, 2024
    Inventors: Yi Ching Ong, Wei-Cheng Wu, Chien Hung Liu, Harry-Haklay Chuang, Yu-Sheng Chen, Yu-Jen Wang, Kuo-Ching Huang
  • Publication number: 20240087960
    Abstract: A method may include forming a mask layer on top of a first dielectric layer formed on a first source/drain and a second source/drain, and creating an opening in the mask layer and the first dielectric layer that exposes portions of the first source/drain and the second source/drain. The method may include filling the opening with a metal layer that covers the exposed portions of the first source/drain and the second source/drain, and forming a gap in the metal layer to create a first metal contact and a second metal contact. The first metal contact may electrically couple to the first source/drain and the second metal contact may electrically couple to the second source/drain. The gap may separate the first metal contact from the second metal contact by less than nineteen nanometers.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 14, 2024
    Inventors: Yu-Lien HUANG, Ching-Feng FU, Huan-Just LIN, Fu-Sheng LI, Tsai-Jung HO, Bor Chiuan HSIEH, Guan-Xuan CHEN, Guan-Ren WANG
  • Publication number: 20240087974
    Abstract: An semiconductor package includes a redistribution structure, a first semiconductor device, a second semiconductor device, an underfill layer and an encapsulant. The first semiconductor device is disposed on and electrically connected with the redistribution structure, wherein the first semiconductor device has a first bottom surface, a first top surface and a first side surface connecting with the first bottom surface and the first top surface, the first side surface comprises a first sub-surface and a second sub-surface connected with each other, the first sub-surface is connected with the first bottom surface, and a first obtuse angle is between the first sub-surface and the second sub-surface.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Sheng Lin, Chin-Hua Wang, Shu-Shen Yeh, Chien-Hung Chen, Po-Yao Lin, Shin-Puu Jeng
  • Publication number: 20240078170
    Abstract: A setting method of in-memory computing simulator includes: performing a plurality of test combinations by an in-memory computing device and recording a plurality of first estimation indices corresponding to the plurality of test combinations respectively, wherein each of the plurality of test combinations includes one of a plurality of neural network models and one of a plurality of datasets, executing a simulator according to the plurality of test combinations by a processing device and recording a plurality of second estimation indices corresponding to the plurality of test combinations respectively, wherein the simulator has a plurality of adjustable settings; calculating a correlation sum according to the plurality of first estimation indices and the plurality of second estimation indices by the processing device, and performing an optimal algorithm to search an optimal parameter in the setting space constructed by the plurality of settings so that the correlation sum is maximal.
    Type: Application
    Filed: November 21, 2022
    Publication date: March 7, 2024
    Inventors: Ke-Han Li, Chih-Fan Hsu, Yu-Sheng Lin, Wei-Chao CHEN
  • Publication number: 20240057343
    Abstract: Provided are ferroelectric tunnel junction (FTJ) structures, memory devices, and methods for fabricating such structures and devices. An FTJ structure includes a first electrode, a ferroelectric material layer, and a catalytic metal layer in contact with the ferroelectric material layer.
    Type: Application
    Filed: August 11, 2022
    Publication date: February 15, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuen-Yi Chen, Yu-Sheng Chen, Yi Ching Ong, Kuo-Ching Huang
  • Publication number: 20240047508
    Abstract: A semiconductor structure includes an inductive metal line located in a dielectric material layer that overlies a semiconductor substrate and laterally encloses a first area; and an array of first ferromagnetic plates including a first ferromagnetic material and overlying or underlying the inductive metal line. For any first point that is selected within volumes of the first ferromagnetic plates, a respective second point exists within a horizontal surface of the inductive metal line such that a line connecting the first point and the second point is vertical or has a respective first taper angle that is less than 20 degrees with respective to a vertical direction. The magnetic field passing through the first ferromagnetic plates is applied generally along a hard direction of magnetization and the hysteresis effect is minimized.
    Type: Application
    Filed: August 8, 2022
    Publication date: February 8, 2024
    Inventors: Yu-Sheng Chen, Hsien Jung Chen, Kuen-Yi Chen, Chien Hung Liu, Yi Ching Ong, Yu-Jen Wang, Kuo-Ching Huang, Harry-Hak-Lay Chuang
  • Publication number: 20240040799
    Abstract: A memory device includes a transistor device; a memory cell electrically coupled to a source or drain of the transistor device, wherein the memory cell includes an FJT structure; and a heating structure formed around the memory cell on a plurality of sides. The FJT structure includes a first conductive electrode having sidewalls that extend in a vertical direction to a first elevation level, a second conductive electrode having sidewalls that extend in the vertical direction to the first elevation level, and a switching barrier disposed between the first conductive electrode and the second conductive electrode and having sidewalls that extend in the vertical direction to the first elevation level, wherein the vertically extending sidewalls of the first conductive electrode, the second conductive electrode, and the switching barrier terminate at the first elevation level. The switching barrier includes ferroelectric (Fe) material that may be polarized to store information.
    Type: Application
    Filed: July 28, 2022
    Publication date: February 1, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuen-Yi Chen, Fu-Hai Li, Yi Ching Ong, Kuo-Ching Huang, Yi-Hsuan Chen, Yu-Sheng Chen
  • Publication number: 20240032309
    Abstract: A memory device includes a first electrode, a selector layer and a plurality of first work function layers. The first work function layers are disposed between the first electrode and the selector layer, and a work function of the first work function layer increases as the first work function layer becomes closer to the selector layer.
    Type: Application
    Filed: October 3, 2023
    Publication date: January 25, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Li Chiang, Jung-Piao Chiu, Tzu-Chiang Chen, Yu-Sheng Chen, Xinyu BAO
  • Publication number: 20240016072
    Abstract: A memory cell includes a bottom electrode, a thermal preservation layer, a first dielectric layer, a variable resistance layer, and a top electrode. The bottom electrode includes a first electrode and a second electrode spatially separated from the first electrode. The thermal preservation layer is partially sandwiched between the first electrode and the second electrode. The first dielectric layer laterally surrounds the bottom electrode and the thermal preservation layer. The variable resistance layer is disposed on the second electrode, the thermal preservation layer, and the first dielectric layer. The top electrode is disposed on the variable resistance layer.
    Type: Application
    Filed: July 7, 2022
    Publication date: January 11, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hengyuan Lee, Yu-Sheng Chen, Cheng-Chun Chang, Xinyu BAO
  • Publication number: 20240008373
    Abstract: In various embodiments, an improved structure for a PCM device is provided. The improved structure is configured to help prevent heat dissipation. In one example, the PCM device is an PCM RF Switch, which has a substrate, a heater, a dielectric/insulator layer, oxidation layers, electrodes, a PCM region, and/or any other components. The oxidation layers are configured to help prevent heat dissipation from the heater.
    Type: Application
    Filed: June 29, 2022
    Publication date: January 4, 2024
    Inventors: Chang-Chih Huang, Han-Yu Chen, Yu-Sheng Chen, Kuo-Chyuan Tzeng