Patents by Inventor Yucheng Lan

Yucheng Lan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200024701
    Abstract: Systems and methods of manufacturing a thermoelectric, high performance material by using ball-milling and hot pressing materials according to various formulas, where some formulas substitute a different element for part of one of the elements in the formula, in order to obtain a figure of merit (ZT) suitable for thermoelectric applications.
    Type: Application
    Filed: April 30, 2019
    Publication date: January 23, 2020
    Applicant: University of Houston System
    Inventors: Zhifeng Ren, Huaizhou Zhao, Zhongjia Tang, Jiehe Sui, Yucheng Lan, Qing Jie
  • Patent number: 10323305
    Abstract: Systems and methods of manufacturing a thermoelectric, high performance material by using ball-milling and hot pressing materials according to various formulas, where some formulas substitute a different element for part of one of the elements in the formula, in order to obtain a figure of merit (ZT) suitable for thermoelectric applications.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: June 18, 2019
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Zhifeng Ren, Huaizhou Zhao, Zhongjia Tang, Jiehe Sui, Yucheng Lan, Qing Jie
  • Publication number: 20160326615
    Abstract: Systems and methods of manufacturing a thermoelectric, high performance material by using ball-milling and hot pressing materials according to various formulas, where some formulas substitute a different element for part of one of the elements in the formula, in order to obtain a figure of merit (ZT) suitable for thermoelectric applications.
    Type: Application
    Filed: February 17, 2015
    Publication date: November 10, 2016
    Inventors: Zhifeng Ren, Huaizhou Zhao, Zhongjia Tang, Jiehe Sui, Yucheng Lan, Qing Jie
  • Publication number: 20150068574
    Abstract: Thermoelectric materials with high figures of merit, ZT values, are disclosed. In many instances, such materials include nano-sized domains (e.g., nanocrystalline), which are hypothesized to help increase the ZT value of the material (e.g., by increasing phonon scattering due to interfaces at grain boundaries or grain/inclusion boundaries). The ZT value of such materials can be greater than about 1, 1.2, 1.4, 1.5, 1.8, 2 and even higher. Such materials can be manufactured from a thermoelectric starting material by generating nanoparticles therefrom, or mechanically alloyed nanoparticles from elements which can be subsequently consolidated (e.g., via direct current induced hot press) into a new bulk material. Non-limiting examples of starting materials include bismuth, lead, and/or silicon-based materials, which can be alloyed, elemental, and/or doped. Various compositions and methods relating to aspects of nanostructured theromoelectric materials (e.g., modulation doping) are further disclosed.
    Type: Application
    Filed: October 17, 2014
    Publication date: March 12, 2015
    Inventors: Zhifeng Ren, Bed Poudel, Gang Chen, Yucheng Lan, Dezhi Wang, Qing Hao, Mildred Dresselhaus, Yi Ma, Xiao Yan, Xiaoyuan Chen, Xiaowei Wang, Joshi R. Giri, Bo Yu
  • Patent number: 8865995
    Abstract: Thermoelectric materials with high figures of merit, ZT values, are disclosed. In many instances, such materials include nano-sized domains (e.g., nanocrystalline), which are hypothesized to help increase the ZT value of the material (e.g., by increasing phonon scattering due to interfaces at grain boundaries or grain/inclusion boundaries). The ZT value of such materials can be greater than about 1, 1.2, 1.4, 1.5, 1.8, 2 and even higher. Such materials can be manufactured from a thermoelectric starting material by generating nanoparticles therefrom, or mechanically alloyed nanoparticles from elements which can be subsequently consolidated (e.g., via direct current induced hot press) into a new bulk material. Non-limiting examples of starting materials include bismuth, lead, and/or silicon-based materials, which can be alloyed, elemental, and/or doped. Various compositions and methods relating to aspects of nanostructured thermoelectric materials (e.g., modulation doping) are further disclosed.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: October 21, 2014
    Assignees: Trustees of Boston College, Massachusetts Institute of Technology
    Inventors: Zhifeng Ren, Bed Poudel, Gang Chen, Yucheng Lan, Dezhi Wang, Qing Hao, Mildred Dresselhaus, Yi Ma, Xiao Yan, Xiaoyuan Chen, Xiaowei Wang, Joshi R. Giri, Bo Yu
  • Publication number: 20080202575
    Abstract: Thermoelectric materials with high figures of merit, ZT values, are disclosed. In many instances, such materials include nano-sized domains (e.g., nanocrystalline), which are hypothesized to help increase the ZT value of the material (e.g., by increasing phonon scattering due to interfaces at grain boundaries or grain/inclusion boundaries). The ZT value of such materials can be greater than about 1, 1.2, 1.4, 1.5, 1.8, 2 and even higher. Such materials can be manufactured from a thermoelectric starting material by generating nanoparticles therefrom, or mechanically alloyed nanoparticles from elements which can be subsequently consolidated (e.g., via direct current induced hot press) into a new bulk material. Non-limiting examples of starting materials include bismuth, lead, and/or silicon-based materials, which can be alloyed, elemental, and/or doped. Various compositions and methods relating to aspects of nanostructured thermoelectric materials (e.g., modulation doping) are further disclosed.
    Type: Application
    Filed: December 3, 2007
    Publication date: August 28, 2008
    Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT), The Trustees of Boston College
    Inventors: Zhifeng Ren, Bed Poudel, Gang Chen, Yucheng Lan, Dezhi Wang, Qing Hao, Mildred Dresselhaus, Yi Ma, Xiao Yan, Xiaoyuan Chen, Xiaowei Wang, Joshi R. Giri, Bo Yu
  • Patent number: 6827822
    Abstract: A method for increasing and/or modulating the yield shear stress of an electrorheological fluid includes applying a sufficient electric field to the fluid to cause the formation of chains of particles, and then applying a sufficient pressure to the fluid to cause thickening or aggregation of the chains. An apparatus for increasing and/or modulating the transfer or force or torque between two working structures includes an electrorheological fluid and electrodes through which an electric field is applied to the fluid such that particles chains of particles are formed in the fluid and, upon application of pressure to the fluid, the chains thicken or aggregate and improve the force or torque transmission.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: December 7, 2004
    Assignee: Temple University of the Commonwealth System of Higher Education
    Inventors: Rongjia Tao, Yucheng Lan, Xiaojun Xu, Edward Kaczanowicz
  • Publication number: 20030089596
    Abstract: A method for increasing and/or modulating the yield shear stress of an electrorheological fluid includes applying a sufficient electric field to the fluid to cause the formation of chains of particles, and then applying a sufficient pressure to the fluid to cause thickening or aggregation of the chains. An apparatus for increasing and/or modulating the transfer or force or torque between two working structures includes an electrorheological fluid and electrodes through which an electric field is applied to the fluid such that particles chains of particles are formed in the fluid and, upon application of pressure to the fluid, the chains thicken or aggregate and improve the force or torque transmission.
    Type: Application
    Filed: November 9, 2001
    Publication date: May 15, 2003
    Applicant: Temple University of the Commonwealth System of Higher Education
    Inventors: Rongjia Tao, Yucheng Lan, Xiaojun Xu, Edward Kaczanowicz