Patents by Inventor Yuji Yamamoto

Yuji Yamamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240149900
    Abstract: An HMI control device is configured to control an HMI device mounted in a vehicle, which is capable of performing an autonomous driving as a first task. The HMI control device is configured to: acquire a possible duration for the autonomous driving; and present, by the HMI device, a second task that an occupant on a driver's seat is able to start executing during the autonomous driving based on the possible duration acquired by the time acquisition unit.
    Type: Application
    Filed: January 12, 2024
    Publication date: May 9, 2024
    Inventors: Yuji OTA, Asako NAGATA, Takeshi YAMAMOTO, Shizuka YOKOYAMA, Takuya KUME, Kazuki KOJIMA
  • Publication number: 20240148895
    Abstract: An antibody-drug conjugate represented by formula (I): (where Ab is an antibody, X is a group represented by formula (X-1), formula (X-2) or formula (X-3): (where at the left represents the binding site with NH and at the right represents the binding side with D), D is a group represented by formula (D-1) or formula (D-2): (where represents the binding site with X), and n is in the range of about 1 to about 8).
    Type: Application
    Filed: August 24, 2023
    Publication date: May 9, 2024
    Inventors: Masayuki MIYANO, Yuya NAKAZAWA, Kentaro ISO, Yuki YABE, Hirotatsu UMIHARA, Junichi TAGUCHI, Satoshi INOUE, Shuntaro TSUKAMOTO, Hiroyuki KOGAI, Atsumi YAMAGUCHI, Tsuyoshi AKAGI, Yohei MUKAI, Toshifumi HIRAYAMA, Masaki KATO, Toshiki MOCHIZUKI, Akihiko YAMAMOTO, Yuji YAMAMOTO, Takato SAKURADA
  • Patent number: 11969830
    Abstract: An aluminum alloy brazing sheet including a core material, a sacrificial material provided on one surface of the core material, a brazing filler material provided on the other surface side of the core material, and an intermediate layer provided between the core material and the brazing filler material. The core material contains Si: 0.30 to 1.00 mass %, Mn: 0.50 to 2.00 mass %, Cu: 0.60 to 1.20 mass %, Mg: 0.05 to 0.80 mass %, and Al. The sacrificial material contains Si: 0.10 to 1.20 mass %, Zn: 2.00 to 7.00 mass %, Mn: 0.40 mass % or less, and Al. The intermediate layer contains Si: 0.05 to 1.20 mass %, Mn: 0.50 to 2.00 mass %, Cu: 0.10 to 1.20 mass %, and Al.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: April 30, 2024
    Assignee: Kobe Steel, Ltd.
    Inventors: Tatsuki Hashimoto, Kenichiro Yoshida, Yuji Shibuya, Akihiro Tsuruno, Yoshikazu Miyano, Hajime Sugito, Michiyasu Yamamoto, Masayuki Makita, Arisu Fujii, Shin Takewaka, Hayaki Teramoto, Koichi Yamamoto, Toshihide Ninagawa
  • Publication number: 20240138263
    Abstract: A light emitting element of one or more embodiments includes a first electrode, a second electrode oppositely to the first electrode, and an emission layer between the first electrode and the second electrode. The light emitting element of one or more embodiments includes a polycyclic compound represented by a specific chemical structure in the emission layer, thereby showing improved emission efficiency and life characteristics.
    Type: Application
    Filed: September 18, 2023
    Publication date: April 25, 2024
    Inventors: Makoto YAMAMOTO, Keigo HOSHI, Yuji SUZAKI, Hirokazu KUWABARA, Nobutaka AKASHI, Ryuhei FURUE, Toshiyuki MATSUURA, Yoshiro SUGITA, Yuma AOKI, Yuuki MIYAZAKI
  • Patent number: 11967700
    Abstract: A non-aqueous electrolyte secondary battery that has a low initial resistance and an increase in resistance after charging and discharging is suppressed. The secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode includes a positive electrode active substance layer, which contains a lithium composite oxide having a layered structure. The lithium composite oxide is a porous particle. A surface of the porous particle includes a layer having a rock salt type structure. A thickness of the layer is not less than 5 nm and not more than 80 nm. A void ratio of the porous particle is not less than 15% and not more than 48%. The porous particle contains two or more voids having diameters that are at least 10% of the particle diameter of the porous particle. The surface of the porous particle includes a coating of lithium tungstate.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: April 23, 2024
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Patent number: 11962000
    Abstract: A non-aqueous electrolyte secondary battery is obtained using a lithium composite oxide having a layered structure in a positive electrode active substance. An increase in resistance following repeated charging and discharging is suppressed. The battery includes a positive electrode provided with a positive electrode active substance layer, a negative electrode and a non-aqueous electrolyte. The positive electrode active substance layer contains a porous particle lithium composite oxide having a layered structure. The average void ratio of the porous particle is not less than 12% but not more than 50%, and it contains two or more voids having diameters that are at least 8% of its particle diameter. The surface of the porous particle is provided with a coating of lithium tungstate. The coverage ratio of the surface of the porous particle by the lithium tungstate is not less than 10% but not more than 65%.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: April 16, 2024
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Publication number: 20240120794
    Abstract: A motor includes a stator having a stator core. The stator includes a coil connection body of one phase having a plurality of coils connected with each other; at least one of the coils has an electrical resistance set to be different from an electrical resistance of another of the coils. The stator also includes a coil connection body of another phase having a plurality of coils connected with each other; at least one of the coils has an electrical resistance set to be different from an electrical resistance of another of the coils. Moreover, the coil connection body of the another phase has a combined resistance set to be equal to a combined resistance of the coil connection body of the one phase.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 11, 2024
    Applicant: DENSO CORPORATION
    Inventors: Yusuke TATEISHI, Toshio Yamamoto, Yuji Hayashi
  • Patent number: 11929503
    Abstract: Provided is a positive electrode for a secondary battery in which carbon nanotubes are used, of which an initial resistance is small, and that suppresses an increase in resistance when charging and discharging are repeated. The positive electrode for a secondary battery disclosed herein includes a positive-electrode current collector and a positive-electrode active material layer provided on the positive-electrode current collector. The positive-electrode active material layer contains a positive-electrode active material and carbon nanotubes, and substantially does not contain a resin binder. The positive-electrode active material layer includes a layer-like region that is in contact with the positive-electrode current collector, and a region other than the layer-like region. Both of the layer-like region and the region other than the layer-like region contain carbon nanotubes.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: March 12, 2024
    Assignee: PRIME PLANET ENERGY & SOLUTIONS, INC.
    Inventor: Yuji Yamamoto
  • Publication number: 20240076548
    Abstract: Provided is a method for enabling recovery of metal element leaching capacity of a deep eutectic solvent used for leaching a metal element from an ore containing the metal element. A method for recycling a hydrophobic deep eutectic solvent disclosed here includes: preparing a hydrophobic deep eutectic solvent used for leaching a metal element from an ore containing the metal element; and bringing the hydrophobic deep eutectic solvent and hydrochloric acid into contact with each other. In the hydrophobic deep eutectic solvent, a hydrogen bond donor is a carboxy group-containing compound, and a hydrogen bond acceptor is chloride salt. The amount of use of the hydrochloric acid is such that hydrogen chloride is 1 mole or more with respect to 1 mole of the hydrogen bond acceptor.
    Type: Application
    Filed: August 22, 2023
    Publication date: March 7, 2024
    Applicants: Prime Planet Energy & Solutions, Inc., KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, TOYOTA TSUSHO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuji YAMAMOTO, Masahiro GOTO, Takafumi HANADA, Takeru MORIYAMA, Momoko PROCTER
  • Patent number: 11923533
    Abstract: A non-aqueous electrolyte secondary battery is obtained using a lithium composite oxide having a layered structure in a positive electrode active substance. An increase in resistance following repeated charging and discharging is suppressed. The battery includes a positive electrode provided with a positive electrode active substance layer, a negative electrode and a non-aqueous electrolyte. The positive electrode active substance layer contains a porous particle lithium composite oxide having a layered structure. The average void ratio of the porous particle is not less than 12% but not more than 50%, and it contains two or more voids having diameters that are at least 8% of its particle diameter. The surface of the porous particle is provided with a coating of lithium tungstate. The coverage ratio of the surface of the porous particle by the lithium tungstate is not less than 10% but not more than 65%.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: March 5, 2024
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Patent number: 11923534
    Abstract: A non-aqueous electrolyte secondary battery which is obtained using a lithium composite oxide having a layered structure and coated with a tungsten-containing compound in a positive electrode active substance, and which has a low initial resistance, and in which an increase in resistance following repeated charging and discharging is suppressed. The non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode and a non-aqueous electrolyte. The positive electrode includes a positive electrode active substance layer containing a lithium composite oxide having a layered structure. The lithium composite oxide includes a porous particle having a void ratio of not less than 20% but not more than 50%. The porous particle contains two or more voids having diameters that are at least 10% of the particle diameter of the porous particle. The surface of the porous particle is provided with a coating containing tungsten oxide and lithium tungstate.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: March 5, 2024
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Publication number: 20240067532
    Abstract: Provided are particles convertible to a lithium transition metal composite oxide that can reduce an initial resistance of a lithium ion secondary battery. The particles disclosed here are particles convertible to a lithium transition metal composite oxide by firing. Each of the particles includes lithium and a transition metal element. The particles have an average particle size of 2.0 ?m or more. In the case of obtaining a reflected electron image of the particles with a scanning electron microscope, a domain observed as a brightest region in the particles has a maximum diameter less than 1 ?m.
    Type: Application
    Filed: August 18, 2023
    Publication date: February 29, 2024
    Applicant: Prime Planet Energy & Solutions, Inc.
    Inventors: Yuji YAMAMOTO, Shinya SUZUKI
  • Patent number: 11911819
    Abstract: A shaping method for a double pipe includes: bending the double pipe with a specified curvature to form a bent portion in the double pipe; and arranging the bent portion on a first shaping die having a first shaping surface at a position biased inward or outward in a curvature radius direction of the bent portion relative to the first shaping surface, wherein the first shaping surface is configured to shape a first outer surface of both outer surfaces of the bent portion that are located on both sides of a plane including a central axis of the bent portion, and pressing the bent portion arranged on the first shaping die by a second shaping die having a second shaping surface configured to shape a second outer surface of the both outer surfaces of the bent portion.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: February 27, 2024
    Assignee: Futaba Industrial Co., Ltd.
    Inventors: Yuji Nakada, Koichiro Yamamoto
  • Patent number: 11855276
    Abstract: An electrode using a carbon nanotube as a conductive material, and excellent in resistance characteristics is provided. An electrode for a secondary battery herein disclosed has a collector, and an active material layer formed on the collector. The active material layer includes an active material and a carbon nanotube. At least a part of the surface of the carbon nanotube is coated with a material including an element with a lower electronegativity than that of carbon.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: December 26, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yuji Yamamoto
  • Patent number: 11777084
    Abstract: A non-aqueous electrolyte secondary battery which is obtained using a lithium composite oxide having a layered structure and coated with a tungsten-containing compound in a positive electrode active substance, and which has a low initial resistance, and in which an increase in resistance following repeated charging and discharging is suppressed. The non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode and a non-aqueous electrolyte. The positive electrode includes a positive electrode active substance layer containing a lithium composite oxide having a layered structure. The lithium composite oxide includes a porous particle having a void ratio of not less than 20% but not more than 50%. The porous particle contains two or more voids having diameters that are at least 10% of the particle diameter of the porous particle. The surface of the porous particle is provided with a coating containing tungsten oxide and lithium tungstate.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: October 3, 2023
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Patent number: 11757085
    Abstract: Provided is a nonaqueous electrolyte secondary battery with a positive electrode active material that contains an excess of Li and has a layered structure, the nonaqueous electrolyte secondary battery having a high output and enabling prevention of gelation of the positive electrode active material layer-forming paste during production. The herein disclosed nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode includes a positive electrode active material layer. The positive electrode active material layer contains a lithium composite oxide having a layered structure as a positive electrode active material. The compositional ratio of the lithium atom to the metal atom other than a lithium atom contained in the lithium composite oxide is greater than 1. The lithium composite oxide is in the form of porous particles.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: September 12, 2023
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Publication number: 20230257282
    Abstract: Provided is a method for leaching nickel from a nickel oxide ore that enables a nickel sulfate production method which is easily carried out with a small amount of waste generation. The method for leaching nickel into an organic phase disclosed here includes the step of bringing a nickel ore into contact with an organic phase. The organic phase contains a hydrophobic deep eutectic solvent including a hydrogen bond donor and a hydrogen bond acceptor, and an organic acid. The hydrogen bond donor is an acidic hydrogen bond donor. The organic acid is a strong acid.
    Type: Application
    Filed: February 8, 2023
    Publication date: August 17, 2023
    Applicants: PRIME PLANET ENERGY & SOLUTIONS, INC., KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, TOYOTA TSUSHO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuji YAMAMOTO, Masahiro GOTO, Takafumi HANADA, Takeru MORIYAMA, Ryosuke OHSAWA
  • Patent number: 11664492
    Abstract: An electrode using a carbon nanotube as a conductive material, and excellent in resistance characteristics is provided. An electrode for a secondary battery herein disclosed has a collector, and an active material layer formed on the collector. The active material layer includes an active material and a carbon nanotube. At least a part of the surface of the carbon nanotube is coated with a material including an element with a lower electronegativity than that of carbon.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: May 30, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yuji Yamamoto
  • Publication number: 20230115237
    Abstract: Provided is a novel method of producing nickel sulfate from nickel oxide. The method of producing nickel sulfate herein disclosed includes a step of feeding nickel oxide particles and an acid aqueous solution into a pressure resistant container, a step of heating the pressure resistant container in a sealed state to a temperature exceeding 100° C. to obtain a mixed liquid in which nickel oxide is dissolved, and a step of forming nickel sulfate, using the mixed liquid.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 13, 2023
    Applicant: PRIME PLANET ENERGY & SOLUTIONS, INC.
    Inventors: Yuji YAMAMOTO, Takeru MORIYAMA, Tomoaki NAKATANI
  • Patent number: RE49925
    Abstract: The present technology relates to a data processing device and a data processing method, which are capable of securing excellent communication quality in data transmission using an LDPC code. In group-wise interleave, an LDPC code in which a code length N is 16200 bits and an encoding rate r is 6/15, 8/15, or 10/15 is interleaved in units of bit groups of 360 bits. In group-wise deinterleave, a sequence of the LDPC code that has undergone the group-wise interleave is restored to an original sequence. For example, the present technology can be applied to a technique of performing data transmission using an LDPC code.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: April 16, 2024
    Assignee: Saturn Licensing LLC
    Inventors: Ryoji Ikegaya, Makiko Yamamoto, Yuji Shinohara