Patents by Inventor Yujun Deng

Yujun Deng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10495582
    Abstract: A DUV laser includes an optical bandwidth filtering device, such as etalon, which is disposed outside of the laser oscillator cavity of the fundamental laser, and which directs one range of wavelengths into one portion of a frequency conversion chain and another range of wavelengths into another portion of the frequency conversion train, thereby reducing the bandwidth of the DUV laser output while maintaining high conversion efficiency in the frequency conversion chain.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: December 3, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Yujun Deng, Yung-Ho Chuang, John Fielden
  • Patent number: 10439355
    Abstract: An optical inspection system that utilizes sub-200 nm incident light beam to inspect a surface of an object for defects is described. The sub-200 nm incident light beam is generated by combining first light having a wavelength of about 1109 nm with second light having a wavelength of approximately 234 nm. An optical system includes optical components configured to direct the incident light beam to a surface of the object, and image relay optics are configured to collect and relay at least two channels of light to a sensor, where at least one channel includes light reflected from the object, and at least one channel includes light transmitted through the object. The sensor is configured to simultaneously detect both the reflected and transmitted light. A laser for generating the sub-200 nm incident light beam includes a fundamental laser, two or more harmonic generators, a frequency doubler and a two frequency mixing stages.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: October 8, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong, Yujun Deng, Justin Dianhuan Liou, Vladimir Dribinski, John Fielden
  • Patent number: 10199149
    Abstract: A laser assembly for generating laser output light at an output wavelength of approximately 183 nm includes a fundamental laser, an optical parametric system (OPS), a fifth harmonic generator, and a frequency mixing module. The fundamental laser generates fundamental light at a fundamental frequency. The OPS generates a down-converted signal at a down-converted frequency. The fifth harmonic generator generates a fifth harmonic of the fundamental light. The frequency mixing module mixes the down-converted signal and the fifth harmonic to produce the laser output light at a frequency equal to a sum of the fifth harmonic frequency and the down-converted frequency. The OPS generates the down-converted signal by generating a down-converted seed signal at the down-converted frequency, and then mixing the down-converted seed signal with a portion of the fundamental light.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: February 5, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, J. Joseph Armstrong, Yujun Deng, Vladimir Dribinski, John Fielden, Jidong Zhang
  • Patent number: 10044164
    Abstract: A repetition rate (pulse) multiplier includes one or more beam splitters and prisms forming one or more ring cavities with different optical path lengths that delay parts of the energy of each pulse. A series of input laser pulses circulate in the ring cavities and part of the energy of each pulse leaves the system after traversing the shorter cavity path, while another part of the energy leaves the system after traversing the longer cavity path, and/or a combination of both cavity paths. By proper choice of the ring cavity optical path length, the repetition rate of an output series of laser pulses can be made to be a multiple of the input repetition rate. The relative energies of the output pulses can be controlled by choosing the transmission and reflection coefficients of the beam splitters. Some embodiments generate a time-averaged output beam profile that is substantially flat in one dimension.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: August 7, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, Xiaoxu Lu, Justin Dianhuan Liou, J. Joseph Armstrong, Yujun Deng, John Fielden
  • Publication number: 20180191126
    Abstract: An optical inspection system that utilizes sub-200 nm incident light beam to inspect a surface of an object for defects is described. The sub-200 nm incident light beam is generated by combining first light having a wavelength of about 1109 nm with second light having a wavelength of approximately 234 nm. An optical system includes optical components configured to direct the incident light beam to a surface of the object, and image relay optics are configured to collect and relay at least two channels of light to a sensor, where at least one channel includes light reflected from the object, and at least one channel includes light transmitted through the object. The sensor is configured to simultaneously detect both the reflected and transmitted light. A laser for generating the sub-200 nm incident light beam includes a fundamental laser, two or more harmonic generators, a frequency doubler and a two frequency mixing stages.
    Type: Application
    Filed: February 21, 2018
    Publication date: July 5, 2018
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong, Yujun Deng, Justin Dianhuan Liou, Vladimir Dribinski, John Fielden
  • Patent number: 10014652
    Abstract: A novel broadly tunable optical parametric oscillator is described for use in numerous applications including multi-photon microscopy. The optical parametric oscillator includes at least one sub-picosecond laser pump source configured to output a pump signal having a wavelength of about 650 nm or less and at least one type II optical parametric oscillator in optical communication with the pump source and configured to generate a single widely tunable pulsed optical signal. In one application, an optical system is in optical communication with the optical parametric oscillator and configured to direct at least a portion of the optical signal to a specimen, and at least one analyzing device is configured to receive a signal from the specimen in response to the optical signal.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: July 3, 2018
    Assignee: Newport Corporation
    Inventors: James D. Kafka, James Clark, Ching-Yuan Chien, Yujun Deng, Andrei C. Florean, David E. Spence
  • Patent number: 9935421
    Abstract: An improved solid-state laser for generating sub-200 nm light is described. This laser uses a fundamental wavelength between about 1030 nm and 1065 nm to generate the sub-200 nm light. The final frequency conversion stage of the laser creates the sub-200 nm light by mixing a wavelength of approximately 1109 nm with a wavelength of approximately 234 nm. By proper selection of non-linear media, such mixing can be achieved by nearly non-critical phase matching. This mixing results in high conversion efficiency, good stability, and high reliability.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: April 3, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong, Yujun Deng, Justin Dianhuan Liou, Vladimir Dribinski, John Fielden
  • Publication number: 20170356854
    Abstract: A DUV laser includes an optical bandwidth filtering device, such as etalon, which is disposed outside of the laser oscillator cavity of the fundamental laser, and which directs one range of wavelengths into one portion of a frequency conversion chain and another range of wavelengths into another portion of the frequency conversion train, thereby reducing the bandwidth of the DUV laser output while maintaining high conversion efficiency in the frequency conversion chain.
    Type: Application
    Filed: August 8, 2017
    Publication date: December 14, 2017
    Inventors: Yujun Deng, Yung-Ho Chuang, John Fielden
  • Publication number: 20170323716
    Abstract: A laser assembly for generating laser output light at an output wavelength of approximately 183 nm includes a fundamental laser, an optical parametric system (OPS), a fifth harmonic generator, and a frequency mixing module. The fundamental laser generates fundamental light at a fundamental frequency. The OPS generates a down-converted signal at a down-converted frequency. The fifth harmonic generator generates a fifth harmonic of the fundamental light. The frequency mixing module mixes the down-converted signal and the fifth harmonic to produce the laser output light at a frequency equal to a sum of the fifth harmonic frequency and the down-converted frequency. The OPS generates the down-converted signal by generating a down-converted seed signal at the down-converted frequency, and then mixing the down-converted seed signal with a portion of the fundamental light.
    Type: Application
    Filed: July 26, 2017
    Publication date: November 9, 2017
    Inventors: Yung-Ho Alex Chuang, J. Joseph Armstrong, Yujun Deng, Vladimir Dribinski, John Fielden, Jidong Zhang
  • Patent number: 9804101
    Abstract: A DUV laser includes an optical bandwidth filtering device, such as etalon, which is disposed outside of the laser oscillator cavity of the fundamental laser, and which directs one range of wavelengths into one portion of a frequency conversion chain and another range of wavelengths into another portion of the frequency conversion train, thereby reducing the bandwidth of the DUV laser output while maintaining high conversion efficiency in the frequency conversion chain.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: October 31, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Yujun Deng, Yung-Ho Chuang, John Fielden
  • Patent number: 9768577
    Abstract: A pulse multiplier includes a beam splitter and one or more mirrors. The beam splitter receives a series of input laser pulses and directs part of the energy of each pulse into a ring cavity. After circulating around the ring cavity, part of the pulse energy leaves the ring cavity through the beam splitter and part of the energy is recirculated. By selecting the ring cavity optical path length, the repetition rate of an output series of laser pulses can be made to be a multiple of the input repetition rate. The relative energies of the output pulses can be controlled by choosing the transmission and reflection coefficients of the beam splitter. This pulse multiplier can inexpensively reduce the peak power per pulse while increasing the number of pulses per second with minimal total power loss.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: September 19, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, Justin Dianhuan Liou, J. Joseph Armstrong, Yujun Deng
  • Patent number: 9748729
    Abstract: A laser assembly for generating laser output light at an output wavelength of approximately 183 nm includes a fundamental laser, an optical parametric system (OPS), a fifth harmonic generator, and a frequency mixing module. The fundamental laser generates fundamental light at a fundamental frequency. The OPS generates a down-converted signal at a down-converted frequency. The fifth harmonic generator generates a fifth harmonic of the fundamental light. The frequency mixing module mixes the down-converted signal and the fifth harmonic to produce the laser output light at a frequency equal to a sum of the fifth harmonic frequency and the down-converted frequency. The OPS generates the down-converted signal by generating a down-converted seed signal at the down-converted frequency, and then mixing the down-converted seed signal with a portion of the fundamental light.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: August 29, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, J. Joseph Armstrong, Yujun Deng, Vladimir Dribinski, John Fielden, Jidong Zhang
  • Publication number: 20170063026
    Abstract: An improved solid-state laser for generating sub-200 nm light is described. This laser uses a fundamental wavelength between about 1030 nm and 1065 nm to generate the sub-200 nm light. The final frequency conversion stage of the laser creates the sub-200 nm light by mixing a wavelength of approximately 1109 nm with a wavelength of approximately 234 nm. By proper selection of non-linear media, such mixing can be achieved by nearly non-critical phase matching. This mixing results in high conversion efficiency, good stability, and high reliability.
    Type: Application
    Filed: November 4, 2016
    Publication date: March 2, 2017
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong, Yujun Deng, Justin Dianhuan Liou, Vladimir Dribinski, John Fielden
  • Patent number: 9529182
    Abstract: An improved solid-state laser for generating sub-200 nm light is described. This laser uses a fundamental wavelength between about 1030 nm and 1065 nm to generate the sub-200 nm light. The final frequency conversion stage of the laser creates the sub-200 nm light by mixing a wavelength of approximately 1109 nm with a wavelength of approximately 234 nm. By proper selection of non-linear media, such mixing can be achieved by nearly non-critical phase matching. This mixing results in high conversion efficiency, good stability, and high reliability.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: December 27, 2016
    Assignee: KLA—Tencor Corporation
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong, Yujun Deng, Justin Dianhuan Liou, Vladimir Dribinski, John Fielden
  • Patent number: 9525265
    Abstract: A repetition rate (pulse) multiplier includes one or more beam splitters and prisms forming one or more ring cavities with different optical path lengths that delay parts of the energy of each pulse. A series of input laser pulses circulate in the ring cavities and part of the energy of each pulse leaves the system after traversing the shorter cavity path, while another part of the energy leaves the system after traversing the longer cavity path, and/or a combination of both cavity paths. By proper choice of the ring cavity optical path length, the repetition rate of an output series of laser pulses can be made to be a multiple of the input repetition rate. The relative energies of the output pulses can be controlled by choosing the transmission and reflection coefficients of the beam splitters. Some embodiments generate a time-averaged output beam profile that is substantially flat in one dimension.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: December 20, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, Xiaoxu Lu, Justin Dianhuan Liou, J. Joseph Armstrong, Yujun Deng, John Fielden
  • Publication number: 20160359292
    Abstract: A repetition rate (pulse) multiplier includes one or more beam splitters and prisms forming one or more ring cavities with different optical path lengths that delay parts of the energy of each pulse. A series of input laser pulses circulate in the ring cavities and part of the energy of each pulse leaves the system after traversing the shorter cavity path, while another part of the energy leaves the system after traversing the longer cavity path, and/or a combination of both cavity paths. By proper choice of the ring cavity optical path length, the repetition rate of an output series of laser pulses can be made to be a multiple of the input repetition rate. The relative energies of the output pulses can be controlled by choosing the transmission and reflection coefficients of the beam splitters. Some embodiments generate a time-averaged output beam profile that is substantially flat in one dimension.
    Type: Application
    Filed: August 17, 2016
    Publication date: December 8, 2016
    Inventors: Yung-Ho Alex Chuang, Xiaoxu Lu, Justin Dianhuan Liou, J. Joseph Armstrong, Yujun Deng, John Fielden
  • Patent number: 9419407
    Abstract: A pulsed UV laser assembly includes a partial reflector or beam splitter that divides each fundamental pulse into two sub-pulses and directs one sub-pulse to one end of a Bragg grating and the other pulse to the other end of the Bragg grating (or another Bragg grating) such that both sub-pulses are stretched and receive opposing (positive and negative) frequency chirps. The two stretched sub-pulses are combined to generate sum frequency light having a narrower bandwidth than could be obtained by second-harmonic generation directly from the fundamental. UV wavelengths may be generated directly from the sum frequency light or from a harmonic conversion scheme incorporating the sum frequency light. The UV laser may further incorporate other bandwidth reducing schemes. The pulsed UV laser may be used in an inspection or metrology system.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: August 16, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Yujun Deng, J. Joseph Armstrong, Yung-Ho Alex Chuang, Vladimir Dribinski, John Fielden
  • Publication number: 20160211642
    Abstract: A novel broadly tunable optical parametric oscillator is described for use in numerous applications including multi-photon microscopy. The optical parametric oscillator includes at least one sub-picosecond laser pump source configured to output a pump signal having a wavelength of about 650 nm or less and at least one type II optical parametric oscillator in optical communication with the pump source and configured to generate a single widely tunable pulsed optical signal. In one application, an optical system is in optical communication with the optical parametric oscillator and configured to direct at least a portion of the optical signal to a specimen, and at least one analyzing device is configured to receive a signal from the specimen in response to the optical signal.
    Type: Application
    Filed: September 30, 2014
    Publication date: July 21, 2016
    Applicant: Newport Corporation
    Inventors: James D. Kafka, James Clark, Ching-Yuan Chien, Yujun Deng, Andrei C. Florian, David E. Spence
  • Patent number: 9318869
    Abstract: A laser for generating an output wavelength of approximately 193.4 nm includes a fundamental laser, an optical parametric generator, a fourth harmonic generator, and a frequency mixing module. The optical parametric generator, which is coupled to the fundamental laser, can generate a down-converted signal. The fourth harmonic generator, which may be coupled to the optical parametric generator or the fundamental laser, can generate a fourth harmonic. The frequency mixing module, which is coupled to the optical parametric generator and the fourth harmonic generator, can generate a laser output at a frequency equal to a sum of the fourth harmonic and twice a frequency of the down-converted signal.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: April 19, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong, Vladimir Dribinski, Yujun Deng, John Fielden
  • Publication number: 20160099540
    Abstract: A laser assembly for generating laser output light at an output wavelength of approximately 183 nm includes a fundamental laser, an optical parametric system (OPS), a fifth harmonic generator, and a frequency mixing module. The fundamental laser generates fundamental light at a fundamental frequency. The OPS generates a down-converted signal at a down-converted frequency. The fifth harmonic generator generates a fifth harmonic of the fundamental light. The frequency mixing module mixes the down-converted signal and the fifth harmonic to produce the laser output light at a frequency equal to a sum of the fifth harmonic frequency and the down-converted frequency. The OPS generates the down-converted signal by generating a down-converted seed signal at the down-converted frequency, and then mixing the down-converted seed signal with a portion of the fundamental light.
    Type: Application
    Filed: October 1, 2015
    Publication date: April 7, 2016
    Inventors: Yung-Ho Alex Chuang, J. Joseph Armstrong, Yujun Deng, Vladimir Dribinski, John Fielden, Jidong Zhang