Patents by Inventor Yuk-Ming Dennis Lo

Yuk-Ming Dennis Lo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093298
    Abstract: Systems, methods, and apparatuses are provided for diagnosing auto-immune diseases such as systemic lupus erythematosus (SLE) based on the sizes, methylation levels, and/or genomic characteristics of circulating DNA molecules. Patients provide blood or other tissue samples containing cell-free nucleic molecules for analysis. Massively parallel and/or methylation-aware sequencing can be used to determine the sizes and methylation levels of individual DNA molecules and identify the number of molecules originating from different genomic regions.
    Type: Application
    Filed: April 21, 2023
    Publication date: March 21, 2024
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Rebecca Wing Yan Chan, Lai Shan Tam
  • Patent number: 11926821
    Abstract: The quality of cell-free DNA for analysis is improved by techniques described herein. Cell-free DNA may include DNA with defects that do not allow for analysis of those DNA with techniques such as sequencing and targeted capture enrichment. These defects may be defects within the strands of the DNA and not present at the ends of the DNA. These intrastrand defects in cell-free DNA can be repaired. The repair of the defects in cell-free DNA may then allow for these repaired cell-free DNA to be analyzed by techniques, including sequencing and targeted capture enrichment.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: March 12, 2024
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Cheuk Ho Tsang, Peiyong Jiang, Si Long Vong, Rossa Wai Kwun Chiu
  • Patent number: 11923046
    Abstract: Disclosed herein are methods, systems, and apparatus for detecting microamplifications or microdeletions in the genome of a fetus. In some embodiments, the method comprises receiving sequence tags for each of a plurality of DNA fragments in a biological sample; determining genomic positions for the sequence tags; determining whether the density of DNA in each of a plurality of genomic regions is aberrantly high or low; identifying as a microamplification a set of consecutive genomic regions having aberrantly high density; and identifying as a microdeletion a set of consecutive genomic regions having aberrantly low density. The biological sample may be a blood sample obtained noninvasively from a female subject pregnant with the fetus.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: March 5, 2024
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk Ming Dennis Lo, Kwan Chee Chan, Peiyong Jiang, Cheuk Yin Jandy Yu, Rossa Wai Kwun Chiu
  • Patent number: 11898208
    Abstract: The present invention concerns a method for the detection or monitoring of cancer using a biological sample selected from blood, plasma, serum, saliva, urine from an individual, said method comprising: (a) obtaining DNA from the said biological sample; (b) digesting the DNA sample with one or more methylation-sensitive restriction enzymes; (c) quantifying or detecting a DNA sequence of interest after step (b), wherein the target sequence of interest contains at least two methylation-sensitive restriction enzyme recognition sites; and (d) comparing the level of the DNA sequence from the individual to a normal standard, to detect, prognosticate or monitor cancer.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: February 13, 2024
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Kwan Chee Allen Chan, Chunming Ding
  • Publication number: 20240043935
    Abstract: Measuring quantities (e.g., relative frequencies) of particular sequence motifs of cell-free DNA fragments in a biological sample can be used to analyze the biological sample. The particular sequence motifs or sequence sizes in certain genomic regions may indicate a histone modification. The sequence motifs and/or sizes can be used to measure a property of the sample (e.g., fractional concentration of a tissue type or a characteristic of the tissue type), to measure an amount of histone modifications, to determine a condition of the organism based on such measurements, and to enrich a biological sample for clinically-relevant DNA. Different tissue types can exhibit different patterns for the relative frequencies of the sequence motifs. Measures of the relative frequencies of sequence motifs of cell-free DNA can be used for analysis.
    Type: Application
    Filed: July 28, 2023
    Publication date: February 8, 2024
    Inventors: Yuk-Ming Dennis Lo, Peiyong Jiang, Kwan Chee Chan, Masashi Yukawa, Lu Ji, Jinyue Bai
  • Patent number: 11884966
    Abstract: Provided herein are compositions comprising tissue-specific markers for identifying a tissue of origin of a cell-free nucleic acid, e.g., a cell-free DNA molecule. Also provided herein are methods, compositions, and systems for identifying a tissue of origin of a cell-free nucleic acid by determining an absolute amount of cell-free nucleic acids comprising the tissue-specific marker. Also provided herein are methods, compositions, and systems for detecting a cancer in a tissue of an organism by analyzing tissue-specific markers.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: January 30, 2024
    Assignee: GRAIL, LLC
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Wanxia Gai, Lu Ji
  • Publication number: 20240018570
    Abstract: Systems and methods for using determination of base modification in analyzing nucleic acid molecules and acquiring data for analysis of nucleic acid molecules are described herein. Base modifications may include methylations. Methods to determine base modifications may include using features derived from sequencing. These features may include the pulse width of an optical signal from sequencing bases, the interpulse duration of bases, and the identity of the bases. Machine learning models can be trained to detect the base modifications using these features. The relative modification or methylation levels between haplotypes may indicate a disorder. Modification or methylation statuses may also be used to detect chimeric molecules.
    Type: Application
    Filed: September 11, 2023
    Publication date: January 18, 2024
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Wenlei Peng, On Yee Tse
  • Patent number: 11873527
    Abstract: Techniques are provided for detecting hematological disorders using cell-free DNA in a blood sample, e.g., using plasma or serum. For example, an assay can target one or more differentially-methylated regions specific to a particular hematological cell lineage (e.g., erythroblasts). A methylation level can be quantified from the assay to determine an amount of methylated or unmethylated DNA fragments in a cell-free mixture of the blood sample. The methylation level can be compared to one or more cutoff values, e.g., that correspond to a normal range for the particular hematological cell lineage as part of determining a level of a hematological disorder.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: January 16, 2024
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Kun Sun
  • Publication number: 20240011105
    Abstract: Various embodiments are directed to detecting infection-causing microbial cell-free DNA from a biological sample based on their size profiles and/or end signatures, in which the detection of infection-causing microbial DNA can be performed without no template control (NTC) samples. Embodiments can include identifying the infection-causing pathogen-derived microbial DNA based on sizes of microbial cell-free DNA molecules. Embodiments can also include identifying from the infection-causing pathogen-derived microbial DNA based on end signatures of microbial cell-free DNA molecules. Embodiments can also include applying a machine-learning algorithm to a plurality of vectors that represent end signatures of the microbial cell-free DNA molecules, to identify the infection-causing pathogen-derived microbial DNA. By detecting the infection-causing pathogen-derived microbial DNA, a level of infection for the biological sample can be predicted.
    Type: Application
    Filed: July 8, 2022
    Publication date: January 11, 2024
    Inventors: Yuk-Ming Dennis Lo, Kwan Chee Chan, Rossa Wai Kwun Chiu, Wai Kei Lam, Peiyong Jiang, Guangya Wang
  • Publication number: 20230374601
    Abstract: Fragmentation of cell-free DNA molecules is measured and used for various purposes, including determining methylation, e.g., at a particular site of a DNA molecule, at a particular genomic site in a reference genome for a biological sample (e.g., plasma, serum, urine, saliva) of cell-free DNA of a subject, or for a particular region in the reference genome for the biological sample (also just referred to as a sample). Various types of fragmentation measurements can be used, e.g., end motifs and cleavage profiles. Another purpose is determining a fractional concentration of DNA of a particular tissue type (e.g., clinically-relevant DNA). Another purpose is determining a pathology of a subject using a biological sample including cell-free DNA. The cell-free DNA can be of the subject or of a pathogen (e.g., a virus) in the subject's sample. Sites/regions that are hypermethylated, hypomethylated, 5hmC-enriched, and 5hmC-depleted for a particular tissue type can be used.
    Type: Application
    Filed: March 6, 2023
    Publication date: November 23, 2023
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Qing Zhou, Guannan Kang, Rong Qiao, Lu Ji
  • Publication number: 20230374602
    Abstract: Fragmentation of cell-free DNA molecules is measured and used for various purposes, including determining methylation, e.g., at a particular site of a DNA molecule, at a particular genomic site in a reference genome for a biological sample (e.g., plasma, serum, urine, saliva) of cell-free DNA of a subject, or for a particular region in the reference genome for the biological sample (also just referred to as a sample). Various types of fragmentation measurements can be used, e.g., end motifs and cleavage profiles. Another purpose is determining a fractional concentration of DNA of a particular tissue type (e.g., clinically-relevant DNA). Another purpose is determining a pathology of a subject using a biological sample including cell-free DNA. The cell-free DNA can be of the subject or of a pathogen (e.g., a virus) in the subject's sample. Sites/regions that are hypermethylated, hypomethylated, 5hmC-enriched, and 5hmC-depleted for a particular tissue type can be used.
    Type: Application
    Filed: March 6, 2023
    Publication date: November 23, 2023
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Qing Zhou, Guannan Kang, Rong Qiao, Lu Ji
  • Publication number: 20230366007
    Abstract: Cell-free nucleic acid from extracellular particles (EPs) is analyzed. A sample can be purified for the extracellular particles. As examples, the purification can include centrifuging, washing, and a nuclease treatment. To increase the fetal fraction, the purification can enrich a sample for a certain type of EPs (e.g., long EPs). In this manner, a desired population of particles can be selected for the analysis of their nucleic acids. As part of an analysis of the nucleic acid molecules (fragments) from an enriched sample, nucleic acid molecules greater than a certain size can be selected, which can increase genetic and/or epigenetic informativeness, without an adverse effect (e.g., the reduction of fetal DNA fraction). The long nucleic acid fragments can be analyzed in various ways, including using short read sequencing techniques that perform fragmentation before sequencing and using long read sequencing techniques.
    Type: Application
    Filed: May 9, 2023
    Publication date: November 16, 2023
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Pelyong Jiang, Qing Zhou
  • Publication number: 20230323462
    Abstract: Methods, systems, and apparatus are provided for determining whether a nucleic acid sequence imbalance exists within a biological sample. One or more cutoff values for determining an imbalance of, for example, the ratio of the two sequences (or sets of sequences) are chosen. The cutoff value may be determined based at least in part on the percentage of fetal DNA in a sample, such as maternal plasma, containing a background of maternal nucleic acid sequences. The percentage of fetal DNA can be calculated from the same or different data used to determine the cutoff value, and can use a locus where the mother is homozygous and the fetus is heterozygous. The cutoff value may be determined using many different types of methods, such as sequential probability ratio testing (SPRT).
    Type: Application
    Filed: June 16, 2023
    Publication date: October 12, 2023
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Benny Chung Ying Zee, Ka Chun Chong
  • Publication number: 20230313314
    Abstract: Fragmentation of cell-free DNA molecules is measured and used for various purposes, including determining methylation, e.g., at a particular site of a DNA molecule, at a particular genomic site in a reference genome for a biological sample (e.g., plasma, serum, urine, saliva) of cell-free DNA of a subject, or for a particular region in the reference genome for the biological sample (also just referred to as a sample). Various types of fragmentation measurements can be used, e.g., end motifs and cleavage profiles. Another purpose is determining a fractional concentration of DNA of a particular tissue type (e.g., clinically-relevant DNA). Another purpose is determining a pathology of a subject using a biological sample including cell-free DNA. The cell-free DNA can be of the subject or of a pathogen (e.g., a virus) in the subject's sample. Sites/regions that are hypermethylated, hypomethylated, 5hmC-enriched, and 5hmC-depleted for a particular tissue type can be used.
    Type: Application
    Filed: February 7, 2023
    Publication date: October 5, 2023
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Qing Zhou, Guannan Kang, Rong Qiao, Lu Ji
  • Publication number: 20230279498
    Abstract: Methods and systems described herein include using various characteristics of cell-free DNA molecules to determine a property of a biological sample or a subject. Such characteristics can include size (e.g., where characteristic is of long cell-free DNA molecules), methylation, and end motifs. The method includes determining disease classification and/or predicting tissue of origin. In some instances, the characteristics includes determining an amount of long cell-free DNA molecules, and the disease classification can be based on the determined amount. The characteristics can also include identifying methylation pattern of a cell-free DNA molecule, then comparing the methylation pattern to a reference pattern to predict the tissue origin. In some instances, the methylation-pattern analysis includes using a trained machine-learning model.
    Type: Application
    Filed: November 23, 2022
    Publication date: September 7, 2023
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Lok Yee Choy
  • Patent number: 11725245
    Abstract: Methods, systems, and apparatus are provided for determining whether a nucleic acid sequence imbalance exists within a biological sample. One or more cutoff values for determining an imbalance of, for example, the ratio of the two sequences (or sets of sequences) are chosen. The cutoff value may be determined based at least in part on the percentage of fetal DNA in a sample, such as maternal plasma, containing a background of maternal nucleic acid sequences. The percentage of fetal DNA can be calculated from the same or different data used to determine the cutoff value, and can use a locus where the mother is homozygous and the fetus is heterozygous. The cutoff value may be determined using many different types of methods, such as sequential probability ratio testing (SPRT).
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: August 15, 2023
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Benny Chung Ying Zee, Ka Chun Chong
  • Patent number: 11718850
    Abstract: Particular forward and reverse primers may be used to link distant regions of the same large DNA molecule into a smaller DNA molecule. A reverse primer R1 can have a first portion complementary to an ending sequence of region A and can have a second portion having an overlapping sequence. A forward primer F2 can have a first portion complementary to a starting sequence of region B, where the forward primer includes a complementary overlapping sequence (e.g., the same first portion or a second portion) that is complementary to the overlapping sequence. The first portion of F2 may be the entire primer. The smaller DNA molecules can be used to determine haplotypes of regions. Kits including the particular forward and reverse primers are also described.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: August 8, 2023
    Assignee: The Chinese University of Hong Kong
    Inventors: Kwan Chee Chan, Wanxia Gai, Yuk-Ming Dennis Lo
  • Publication number: 20230193360
    Abstract: Systems and methods for using determination of base modification in analyzing nucleic acid molecules and acquiring data for analysis of nucleic acid molecules are described herein. Base modifications may include methylations. Methods to determine base modifications may include using features derived from sequencing. These features may include the pulse width of an optical signal from sequencing bases, the interpulse duration of bases, and the identity of the bases. Machine learning models can be trained to detect the base modifications using these features. The relative modification or methylation levels between haplotypes may indicate a disorder. Modification or methylation statuses may also be used to detect chimeric molecules.
    Type: Application
    Filed: August 19, 2022
    Publication date: June 22, 2023
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Wenlei Peng, On Yee Tse
  • Publication number: 20230197201
    Abstract: Factors affecting the fragmentation pattern of cell-free DNA (e.g., plasma DNA) and the applications, including those in molecular diagnostics, of the analysis of cell-free DNA fragmentation patterns are described. Various applications can use a property of a fragmentation pattern to determine a proportional contribution of a particular tissue type, to determine a genotype of a particular tissue type (e.g., fetal tissue in a maternal sample or tumor tissue in a sample from a cancer patient), and/or to identify preferred ending positions for a particular tissue type, which may then be used to determine a proportional contribution of a particular tissue type.
    Type: Application
    Filed: February 15, 2023
    Publication date: June 22, 2023
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang
  • Publication number: 20230151436
    Abstract: Various embodiments are directed to applications (e.g., classification of biological samples) of the analysis of the count, the fragmentation patterns, and size of cell-free nucleic acids, e.g., plasma DNA and serum DNA, including nucleic acids from pathogens, such as viruses. Embodiments of one application can determine if a subject has a particular condition. For example, a method of present disclosure can determine if a subject has cancer or a tumor, or other pathology. Embodiments of another application can be used to assess the stage of a condition, or the progression of a condition over time. For example, a method of the present disclosure may be used to determine a stage of cancer in a subject, or the progression of cancer in a subject over time (e.g., using samples obtained from a subject at different times).
    Type: Application
    Filed: October 18, 2022
    Publication date: May 18, 2023
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Wai Kei Lam