Patents by Inventor Yuki Iwasaki

Yuki Iwasaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9040441
    Abstract: Provided are an oxide sintered body and a sputtering target that are ideal for the production of an oxide semiconductor film for a display device. The oxide sintered body and sputtering target that are provided have both high conductivity and high relative density, are capable of forming an oxide semiconductor film having a high carrier mobility, and in particular, have excellent direct-current discharge stability in that long-term, stable discharge is possible, even when used by the direct-current sputtering method. The oxide sintered body of the invention is an oxide sintered body obtained by mixing and sintering zinc oxide, tin oxide, and an oxide of at least one metal (M metal) selected from the group consisting of Al, Hf, Ni, Si, Ga, In, and Ta. When the in-plane specific resistance and the specific resistance in the direction of depth are approximated by Gaussian distribution, the distribution coefficient ? of the specific resistance is 0.02 or less.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: May 26, 2015
    Assignee: KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Hiroshi Goto, Yuki Iwasaki
  • Patent number: 9023746
    Abstract: Provided is an oxide sintered body suitably used for the production of an oxide semiconductor film for a display device, wherein the oxide sintered body has both high conductivity and relative density, and is capable of depositing an oxide semiconductor film having high carrier mobility. This oxide sintered body is obtained by mixing and sintering powders of zinc oxide, tin oxide and indium oxide, and when an EPMA in-plane compositional mapping is performed on the oxide sintered body the percentage of the area in which Sn concentration is 10 to 50 mass % in the measurement area is 70 area percent or more.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: May 5, 2015
    Assignee: Kobelco Research Institute, Inc.
    Inventors: Yuki Iwasaki, Hiroshi Goto, Moriyoshi Kanamaru
  • Publication number: 20130341183
    Abstract: Provided are an oxide sintered body and a sputtering target that are ideal for the production of an oxide semiconductor film for a display device. The oxide sintered body and sputtering target that are provided have both high conductivity and high relative density, are capable of forming an oxide semiconductor film having a high carrier mobility, and in particular, have excellent direct-current discharge stability in that long-term, stable discharge is possible, even when used by the direct-current sputtering method. The oxide sintered body of the invention is an oxide sintered body obtained by mixing and sintering zinc oxide, tin oxide, and an oxide of at least one metal (M metal) selected from the group consisting of Al, Hf, Ni, Si, Ga, In, and Ta. When the in-plane specific resistance and the specific resistance in the direction of depth are approximated by Gaussian distribution, the distribution coefficient ? of the specific resistance is 0.02 or less.
    Type: Application
    Filed: March 1, 2012
    Publication date: December 26, 2013
    Applicant: Kobelco Research Institute Inc.
    Inventors: Hiroshi Goto, Yuki Iwasaki
  • Publication number: 20130334039
    Abstract: Provided are an oxide sintered body and a sputtering target which are suitable for use in producing an oxide semiconductor film for display devices and combine high electroconductivity with a high relative density and with which it is possible to form an oxide semiconductor film having a high carrier mobility. In particular, even when used in production by a direct-current sputtering method, the oxide sintered body and the sputtering target are less apt to generate nodules and have excellent direct-current discharge stability which renders long-term stable discharge possible. This oxide sintered body is an oxide sintered body obtained by mixing zinc oxide, tin oxide, and an oxide of at least one metal (M metal) selected from the group consisting of Al, Hf, Ni, Si, Ga, In, and Ta, and sintering the mixture, the oxide sintered body having a Vickers hardness of 400 Hv or higher.
    Type: Application
    Filed: March 1, 2012
    Publication date: December 19, 2013
    Applicant: KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Hiroshi Goto, Yuki Iwasaki
  • Publication number: 20130313110
    Abstract: Provided is an oxide sintered body suitably used for the production of an oxide semiconductor film for a display device, wherein the oxide sintered body has both high conductivity and relative density, and is capable of depositing an oxide semiconductor film having high carrier mobility. This oxide sintered body is obtained by mixing and sintering powders of zinc oxide, tin oxide and indium oxide, and when an EPMA in-plane compositional mapping is performed on the oxide sintered body the percentage of the area in which Sn concentration is 10 to 50 mass % in the measurement area is 70 area percent or more.
    Type: Application
    Filed: February 9, 2012
    Publication date: November 28, 2013
    Applicant: KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Yuki Iwasaki, Hiroshi Goto, Moriyoshi Kanamaru
  • Publication number: 20130306469
    Abstract: Provided is an oxide sintered body suitably used for producing an oxide semiconductor film for a display device, the oxide sintered body capable of forming an oxide semiconductor film exerting excellent conductivity, having high relative density and excellent in-plane uniformity, and exhibiting high carrier mobility. This oxide sintered body is obtained by combining and sintering a zinc oxide powder, a tin oxide powder, and an indium oxide powder. The oxide sintered body satisfies the following equation (1) when the oxide sintered body is subjected to X-ray diffraction, Equation (1): [A/(A+B+C+D)]×100?70. In equation (1), A represents the XRD peak intensity in the vicinity of 2?=34°, B represents the XRD peak intensity in the vicinity of 2?=31°, C represents the XRD peak intensity in the vicinity of 2?=35°, and D represents the XRD peak intensity in the vicinity of 2?=26.5°.
    Type: Application
    Filed: February 9, 2012
    Publication date: November 21, 2013
    Applicant: KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Moriyoshi Kanamaru, Yuki Iwasaki, Minoru Matsui, Hiroshi Goto, Akira Nambu
  • Patent number: 8580093
    Abstract: The present invention provides a technique capable of decreasing a generation of splashing upon depositing by using an Al—Ni—La—Cu alloy sputtering target comprising Ni, La, and Cu. The invention relates to an Al—Ni—La—Cu alloy sputtering target comprising Ni, La and Cu, in which (1) a total area of an Al—Ni intermetallic compound mainly comprising Al and Ni and having an average grain size of 0.3 ?m or more and 3 ?m or less is 70% or more by area ratio based on an entire area of the Al—Ni intermetallic compound, and (2) a total area of an Al—La—Cu intermetallic compound mainly comprising Al, La and Cu and having an average grain size of 0.2 ?m or more and 2 ?m or less is 70% or more by area ratio based on an entire area of the Al—La—Cu intermetallic compound, in a case where a portion of the sputtering target is observed within a range of from ¼t (t: thickness) to ¾t along a cross section vertical to a plane of the sputtering target by using a scanning electron microscope at a magnification of 2000.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: November 12, 2013
    Assignees: Kobelco Research Institute Inc., Kobe Steel, Ltd.
    Inventors: Katsutoshi Takagi, Masaya Ehira, Yuki Iwasaki, Hiroshi Goto
  • Publication number: 20130234081
    Abstract: This oxide sintered compact is obtained by mixing and sintering powders of zinc oxide, tin oxide and indium oxide. As determined by X-ray diffractometry of this oxide sintered compact, the oxide sintered compact has a Zn2SnO4 phase as the main phase and contains an In/In2O3—ZnSnO3 solid solution wherein In and/or In2O3 is solid-solved in ZnSnO3, but a ZnxInyOz phase (wherein x, y and z each represents an arbitrary positive integer) is not detected. Consequently, the present invention was able to provide an oxide sintered compact which is suitable for use in the production of an oxide semiconductor film for display devices and has both high electrical conductivity and high relative density. The oxide sintered compact is capable of forming an oxide semiconductor film that has high carrier mobility.
    Type: Application
    Filed: November 11, 2011
    Publication date: September 12, 2013
    Applicant: KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Hiroshi Goto, Yuki Iwasaki, Masaya Ehira, Yoichiro Yoneda
  • Publication number: 20120325655
    Abstract: The present invention provides a technique capable of suppressing generation of splash even at high-speed deposition by an Al-based alloy sputtering target containing Ni and a rare earth element, wherein when crystallographic orientations <001>, <011>, <111>, <012> and <112> in a normal direction of each sputtering surface at a surface part of the Al-based alloy sputtering target, a ¼×t (t: thickness of the Al-based alloy sputtering target) part thereof and a ½×t part thereof are observed by an electron backscatter diffraction pattern method, the Al-based alloy sputtering target satisfies the requirement (1) that, when a total of area fractions of the <001>±15°, <011>±15° and <112>±15° is defined as R (as for Rat each part, the R at the surface part is defined as Ra, the R at the ¼×t part is defined as Rb, and the R at the ½×t part is defined as Rc), R is 0.35 or more and 0.
    Type: Application
    Filed: February 25, 2011
    Publication date: December 27, 2012
    Applicants: Kobelco Research Institute Inc., Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yuki Iwasaki, Katsushi Matsumoto, Toshiaki Takagi, Mamoru Nagao, Hidetada Makino
  • Patent number: 8163143
    Abstract: The present invention relates to an Al—Ni—La—Si system Al-based alloy sputtering target including Ni, La and Si, in which, when a section from (¼)t to (¾)t (t: thickness) in a cross section vertical to a plane of the sputtering target is observed with a scanning electron microscope at a magnification of 2000 times, (1) a total area of an Al—Ni system intermetallic compound having an average particle diameter of 0.3 ?m to 3 ?m with respect to a total area of the entire Al—Ni system intermetallic compound is 70% or more in terms of an area fraction, the Al—Ni system intermetallic compound being mainly composed of Al and Ni; and (2) a total area of an Al—Ni—La—Si system intermetallic compound having an average particle diameter of 0.2 ?m to 2 ?m with respect to a total area of the entire Al—Ni—La—Si system intermetallic compound is 70% or more in terms of an area fraction, the Al—Ni—La—Si system intermetallic compound being mainly composed of Al, Ni, La, and Si.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: April 24, 2012
    Assignees: Kobe Steel, Ltd., Kobelco Research Institute, Inc.
    Inventors: Katsutoshi Takagi, Yuki Iwasaki, Masaya Ehira, Akira Nanbu, Mototaka Ochi, Hiroshi Goto, Nobuyuki Kawakami
  • Publication number: 20090242394
    Abstract: The present invention provides an Al—(Ni, Co)—(Cu, Ge)—(La, Gd, Nd) alloy sputtering target capable of decreasing a generation of splashing in an initial stage of using the sputtering target, preventing defects caused thereby in interconnection films or the like and improving a yield and operation performance of an FPD, as well as a manufacturing method thereof. The invention relates to an Al-based alloy sputtering target which is an Al—(Ni, Co)—(Cu, Ge)—(La, Gd, Nd) alloy sputtering target comprising at least one member selected from the group A (Ni, Co), at least one member selected from the group B (Cu, Ge), and at least one member selected from the group C (La, Gd, Nd) wherein a Vickers hardness (HV) thereof is 35 or more.
    Type: Application
    Filed: March 31, 2009
    Publication date: October 1, 2009
    Applicants: KOBELCO RESEARCH INSTITUTE, INC., Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.)
    Inventors: Katsutoshi Takagi, Yuki Iwasaki, Masaya Ehira, Hiroshi Goto, Aya Miki, Hiroyuki Okuno, Mototaka Ochi, Tomoya Kishi
  • Publication number: 20090242395
    Abstract: The present invention provides a technique capable of decreasing a generation of splashing upon depositing by using an Al—Ni—La—Cu alloy sputtering target comprising Ni, La, and Cu. The invention relates to an Al—Ni—La—Cu alloy sputtering target comprising Ni, La and Cu, in which (1) a total area of an Al—Ni intermetallic compound mainly comprising Al and Ni and having an average grain size of 0.3 ?m or more and 3 ?m or less is 70% or more by area ratio based on an entire area of the Al—Ni intermetallic compound, and (2) a total area of an Al—La—Cu intermetallic compound mainly comprising Al, La and Cu and having an average grain size of 0.2 ?m or more and 2 ?m or less is 70% or more by area ratio based on an entire area of the Al—La—Cu intermetallic compound, in a case where a portion of the sputtering target is observed within a range of from 1/4 t (t: thickness) to 3/4 t along a cross section vertical to a plane of the sputtering target by using a scanning electron microscope at a magnification of 2000.
    Type: Application
    Filed: March 31, 2009
    Publication date: October 1, 2009
    Applicants: KOBELCO RESEARCH INSTITUTE INC., Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.)
    Inventors: Katsutoshi Takagi, Masaya Ehira, Yuki Iwasaki, Hiroshi Goto
  • Publication number: 20090026072
    Abstract: The present invention relates to an Al—Ni—La—Si system Al-based alloy sputtering target including Ni, La and Si, in which, when a section from (¼)t to (¾)t (t: thickness) in a cross section vertical to a plane of the sputtering target is observed with a scanning electron microscope at a magnification of 2000 times, (1) a total area of an Al—Ni system intermetallic compound having an average particle diameter of 0.3 ?m to 3 ?m with respect to a total area of the entire Al—Ni system intermetallic compound is 70% or more in terms of an area fraction, the Al—Ni system intermetallic compound being mainly composed of Al and Ni; and (2) a total area of an Al—Ni—La—Si system intermetallic compound having an average particle diameter of 0.2 ?m to 2 ?m with respect to a total area of the entire Al—Ni—La—Si system intermetallic compound is 70% or more in terms of an area fraction, the Al—Ni—La—Si system intermetallic compound being mainly composed of Al, Ni, La, and Si.
    Type: Application
    Filed: July 14, 2008
    Publication date: January 29, 2009
    Applicants: Kabushiki Kaisha Kobe Seiko Sho (kobe Steel Ltd.), KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Katsutoshi Takagi, Yuki Iwasaki, Masaya Ehira, Akira Nanbu, Mototaka Ochi, Hiroshi Goto, Nobuyuki Kawakami