Patents by Inventor Yukitoshi KANAYAMA

Yukitoshi KANAYAMA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240012114
    Abstract: An electromagnetic wave detection apparatus comprises an irradiator configured to emit electromagnetic waves; a switch comprising an action surface with a plurality of pixels disposed thereon, the switch being configured to switch each pixel between a first state of causing electromagnetic waves, including reflected waves, from an object, of electromagnetic waves irradiated from the irradiator, incident on the action surface to travel in a first direction and a second state of causing the electromagnetic waves incident on the action surface to travel in a second direction; a first detector configured to detect the electromagnetic waves that travel in the first direction; and a second detector configured to detect the electromagnetic waves that travel in the second direction. Also, the switch is configured to switch each of the plurality of pixels between the first and second states according to an irradiation region of the electromagnetic waves emitted from the irradiator.
    Type: Application
    Filed: September 19, 2023
    Publication date: January 11, 2024
    Applicant: KYOCERA Corporation
    Inventors: Hiroki OKADA, Eri UCHIDA, Hiroyuki MINAGAWA, Yoshiteru TAKAYAMA, Mitsuo ONO, Atsushi HASEBE, Katsutoshi KAWAI, Yukitoshi KANAYAMA
  • Patent number: 11846698
    Abstract: An object detection apparatus includes an irradiator configured to irradiate a detection wave, a detector configured to detect a reflected wave of the detection wave, and a controller configured to estimate an arrival direction and a flight distance of the reflected wave. The controller is configured to perform an object detection process on a detection result of the reflected wave only when the arrival direction and the flight distance are included in a detection target range.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: December 19, 2023
    Assignee: KYOCERA Corporation
    Inventors: Masamitsu Nishikido, Yukitoshi Kanayama, Sunao Hashimoto
  • Patent number: 11835653
    Abstract: An electromagnetic wave detection apparatus (10) includes a switch (16), a first detector (19), and a second detector (20). The switch (16) includes an action surface (as) with a plurality of pixels (px) disposed thereon. The switch (16) is configured to switch each pixel (px) between the first state and the second state. In the first state, the pixels (px) cause electromagnetic waves incident on the action surface (as) to travel in a first direction (d1). In the second state, the pixels (px) cause the electromagnetic waves incident on the action surface (as) to travel in a second direction (d2). The first detector (19) detects the electromagnetic waves that travel in the first direction (d1). The second detector (20) detects the electromagnetic waves that travel in the second direction (d2).
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: December 5, 2023
    Assignee: KYOCERA Corporation
    Inventors: Hiroki Okada, Eri Uchida, Hiroyuki Minagawa, Yoshiteru Takayama, Mitsuo Ono, Atsushi Hasebe, Katsutoshi Kawai, Yukitoshi Kanayama
  • Patent number: 11796641
    Abstract: An electromagnetic wave detection apparatus (10) includes a switch (16), a first detector (19), and a second detector (20). The switch (16) includes an action surface (as) with a plurality of pixels (px) disposed thereon. The switch (16) is configured to switch each pixel (px) between the first state and the second state. In the first state, the pixels (px) cause electromagnetic waves incident on the action surface (as) to travel in a first direction (d1). In the second state, the pixels (px) cause the electromagnetic waves incident on the action surface (as) to travel in a second direction (d2). The first detector (19) detects the electromagnetic waves that travel in the first direction (d1). The second detector (20) detects the electromagnetic waves that travel in the second direction (d2).
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: October 24, 2023
    Assignee: KYOCERA Corporation
    Inventors: Hiroki Okada, Eri Uchida, Hiroyuki Minagawa, Yoshiteru Takayama, Mitsuo Ono, Atsushi Hasebe, Katsutoshi Kawai, Yukitoshi Kanayama
  • Patent number: 11754678
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a memory (13), and a controller (14). The irradiator (11) irradiates electromagnetic waves. The first detector (17) includes detection elements. The detection elements detect, by irradiation position, reflected waves of the electromagnetic waves irradiated onto an object (ob). The memory (13) stores related information. The related information is information associating any two of the emission direction of the electromagnetic waves and elements defining two points on a path. The path refers to a path of the electromagnetic waves emitted from the irradiator (11) to the first detector (17) via the object (ob). The controller (14) updates the related information based on the emission direction of the electromagnetic waves and the position of the detection element, among the detection elements, that detects the reflected waves of the electromagnetic waves.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: September 12, 2023
    Assignee: KYOCERA Corporation
    Inventors: Hiroki Okada, Eri Uchida, Hiroyuki Minagawa, Yoshiteru Takayama, Mitsuo Ono, Atsushi Hasebe, Katsutoshi Kawai, Yukitoshi Kanayama
  • Patent number: 11675052
    Abstract: An electromagnetic wave detection apparatus 10 includes a separator 16, a first detector 17, a switching unit 18, and a second detector 20. The separator 16 is capable of switching between a separation state and a non-separation state. The separator 16 separates incident electromagnetic waves to travel in a first direction d1 and a second direction d2, in the separation state. The first detector 17 detects electromagnetic waves traveling in the first direction d1. The switching unit 18 includes a plurality of switching elements “se”. Each switching element “se” is capable of switching a traveling direction of electromagnetic waves traveling in the second direction d2 between a third direction d3 and a fourth direction d4. The second detector 20 detects electromagnetic waves traveling in the third direction d3.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: June 13, 2023
    Assignee: KYOCERA Corporation
    Inventors: Hiroki Okada, Eri Uchida, Yukitoshi Kanayama
  • Patent number: 11573301
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a memory (19), and a controller (20). The irradiator (11) irradiates electromagnetic waves. The first detector (17) includes detection elements. The detection elements detect, by irradiation position, reflected waves of the electromagnetic waves irradiated on an object (ob). The memory (19) stores first related information including an emission direction of the emitted electromagnetic waves. The controller (20) updates the first related information based on the position of the detection element, among the detection elements, that detects the reflected waves of the electromagnetic waves.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: February 7, 2023
    Assignee: KYOCERA Corporation
    Inventors: Hiroki Okada, Eri Uchida, Hiroyuki Minagawa, Yoshiteru Takayama, Mitsuo Ono, Atsushi Hasebe, Katsutoshi Kawai, Yukitoshi Kanayama
  • Patent number: 11408982
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a propagation unit (20), a memory (13), and a controller (14). The irradiator (11) irradiates electromagnetic waves. The first detector (17) detects reflected waves of the electromagnetic waves irradiated onto an object (ob). The propagation unit (20) includes propagation elements (px). By irradiation position of the electromagnetic waves irradiated onto the object (ob), the propagation elements (px) switch between propagating and not propagating the reflected waves towards the first detector (17). The memory (13) stores information related to the emission direction of the electromagnetic waves. The controller (14) updates the information related to the emission direction based on the position of the propagation element (px) that is propagating the reflected waves toward the first detector (17) when the first detector (17) detects the reflected waves.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: August 9, 2022
    Assignee: KYOCERA Corporation
    Inventors: Hiroki Okada, Eri Uchida, Hiroyuki Minagawa, Yoshiteru Takayama, Mitsuo Ono, Atsushi Hasebe, Katsutoshi Kawai, Yukitoshi Kanayama
  • Patent number: 11194021
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a propagation unit (20), a memory (13), and a controller (14). The irradiator (11) irradiates electromagnetic waves. The first detector (17) detects reflected waves of the electromagnetic waves irradiated onto an object (ob). The propagation unit (20) includes propagation elements (px). By irradiation position of the electromagnetic waves irradiated onto the object (ob), the propagation elements (px) switch between propagating and not propagating the reflected waves of the electromagnetic waves towards the first detector (17). The memory (13) stores related information. The controller (14) updates the related information based on the position of the propagation element (px) that is propagating the reflected waves toward the first detector (17) when the first detector (17) detects the reflected waves.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: December 7, 2021
    Assignee: KYOCERA Corporation
    Inventors: Hiroki Okada, Eri Uchida, Hiroyuki Minagawa, Yoshiteru Takayama, Mitsuo Ono, Atsushi Hasebe, Katsutoshi Kawai, Yukitoshi Kanayama
  • Publication number: 20210041551
    Abstract: An object detection apparatus includes an irradiator configured to irradiate a detection wave, a detector configured to detect a reflected wave of the detection wave, and a controller configured to estimate an arrival direction and a flight distance of the reflected wave. The controller is configured to perform an object detection process on a detection result of the reflected wave only when the arrival direction and the flight distance are included in a detection target range.
    Type: Application
    Filed: February 4, 2019
    Publication date: February 11, 2021
    Applicant: KYOCERA Corporation
    Inventors: Masamitsu NISHIKIDO, Yukitoshi KANAYAMA, Sunao HASHIMOTO
  • Publication number: 20200233067
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a memory (19), and a controller (20). The irradiator (11) irradiates electromagnetic waves. The first detector (17) includes detection elements. The detection elements detect, by irradiation position, reflected waves of the electromagnetic waves irradiated on an object (ob). The memory (19) stores first related information including an emission direction of the emitted electromagnetic waves. The controller (20) updates the first related information based on the position of the detection element, among the detection elements, that detects the reflected waves of the electromagnetic waves.
    Type: Application
    Filed: February 8, 2018
    Publication date: July 23, 2020
    Applicant: KYOCERA Corporation
    Inventors: Hiroki OKADA, Eri UCHIDA, Hiroyuki MINAGAWA, Yoshiteru TAKAYAMA, Mitsuo ONO, Atsushi HASEBE, Katsutoshi KAWAI, Yukitoshi KANAYAMA
  • Publication number: 20200217655
    Abstract: An electromagnetic wave detection apparatus 10 includes a separator 16, a first detector 17, a switching unit 18, and a second detector 20. The separator 16 is capable of switching between a separation state and a non-separation state. The separator 16 separates incident electromagnetic waves to travel in a first direction d1 and a second direction d2, in the separation state. The first detector 17 detects electromagnetic waves traveling in the first direction d1. The switching unit 18 includes a plurality of switching elements “se”. Each switching element “se” is capable of switching a traveling direction of electromagnetic waves traveling in the second direction d2 between a third direction d3 and a fourth direction d4. The second detector 20 detects electromagnetic waves traveling in the third direction d3.
    Type: Application
    Filed: August 3, 2018
    Publication date: July 9, 2020
    Applicant: KYOCERA Corporation
    Inventors: Hiroki OKADA, Eri UCHIDA, Yukitoshi KANAYAMA
  • Publication number: 20200096616
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a propagation unit (20), a memory (13), and a controller (14). The irradiator (11) irradiates electromagnetic waves. The first detector (17) detects reflected waves of the electromagnetic waves irradiated onto an object (ob). The propagation unit (20) includes propagation elements (px). By irradiation position of the electromagnetic waves irradiated onto the object (ob), the propagation elements (px) switch between propagating and not propagating the reflected waves towards the first detector (17). The memory (13) stores information related to the emission direction of the electromagnetic waves. The controller (14) updates the information related to the emission direction based on the position of the propagation element (px) that is propagating the reflected waves toward the first detector (17) when the first detector (17) detects the reflected waves.
    Type: Application
    Filed: March 5, 2018
    Publication date: March 26, 2020
    Applicant: KYOCERA Corporation
    Inventors: Hiroki OKADA, Eri UCHIDA, Hiroyuki MINAGAWA, Yoshiteru TAKAYAMA, Mitsuo ONO, Atsushi HASEBE, Katsutoshi KAWAI, Yukitoshi KANAYAMA
  • Publication number: 20200033116
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a propagation unit (20), a memory (13), and a controller (14). The irradiator (11) irradiates electromagnetic waves. The first detector (17) detects reflected waves of the electromagnetic waves irradiated onto an object (ob). The propagation unit (20) includes propagation elements (px). By irradiation position of the electromagnetic waves irradiated onto the object (ob), the propagation elements (px) switch between propagating and not propagating the reflected waves of the electromagnetic waves towards the first detector (17). The memory (13) stores related information. The controller (14) updates the related information based on the position of the propagation element (px) that is propagating the reflected waves toward the first detector (17) when the first detector (17) detects the reflected waves.
    Type: Application
    Filed: March 16, 2018
    Publication date: January 30, 2020
    Applicant: KYOCERA Corporation
    Inventors: Hiroki OKADA, Eri UCHIDA, Hiroyuki MINAGAWA, Yoshiteru TAKAYAMA, Mitsuo ONO, Atsushi HASEBE, Katsutoshi KAWAI, Yukitoshi KANAYAMA
  • Publication number: 20200018858
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a memory (13), and a controller (14). The irradiator (11) irradiates electromagnetic waves. The first detector (17) includes detection elements. The detection elements detect, by irradiation position, reflected waves of the electromagnetic waves irradiated onto an object (ob). The memory (13) stores related information. The related information is information associating any two of the emission direction of the electromagnetic waves and elements defining two points on a path. The path refers to a path of the electromagnetic waves emitted from the irradiator (11) to the first detector (17) via the object (ob). The controller (14) updates the related information based on the emission direction of the electromagnetic waves and the position of the detection element, among the detection elements, that detects the reflected waves of the electromagnetic waves.
    Type: Application
    Filed: March 1, 2018
    Publication date: January 16, 2020
    Applicant: KYOCERA Corporation
    Inventors: Hiroki OKADA, Eri UCHIDA, Hiroyuki MINAGAWA, Yoshiteru TAKAYAMA, Mitsuo ONO, Atsushi HASEBE, Katsutoshi KAWAI, Yukitoshi KANAYAMA
  • Publication number: 20200003893
    Abstract: An electromagnetic wave detection apparatus (10) includes a switch (16), a first detector (19), and a second detector (20). The switch (16) includes an action surface (as) with a plurality of pixels (px) disposed thereon. The switch (16) is configured to switch each pixel (px) between the first state and the second state. In the first state, the pixels (px) cause electromagnetic waves incident on the action surface (as) to travel in a first direction (dl). In the second state, the pixels (px) cause the electromagnetic waves incident on the action surface (as) to travel in a second direction (d2). The first detector (19) detects the electromagnetic waves that travel in the first direction (dl). The second detector (20) detects the electromagnetic waves that travel in the second direction (d2).
    Type: Application
    Filed: January 26, 2018
    Publication date: January 2, 2020
    Applicant: KYOCERA Corporation
    Inventors: Hiroki OKADA, Eri UCHIDA, Hiroyuki MINAGAWA, Yoshiteru TAKAYAMA, Mitsuo ONO, Atsushi HASEBE, Katsutoshi KAWAI, Yukitoshi KANAYAMA