Patents by Inventor Yulong Tang

Yulong Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9949644
    Abstract: The present invention relates to a torsional vibration resonance frequency measuring method and a novel amplitude transformer for assessing the stability of dental implants. In one example, a torsional vibration resonance frequency measuring method includes installing an amplitude transformer on a dental implant, energizing a torsional vibration mode, gathering resonance signals, and analyzing a resonance frequency. In another example, an amplitude transformer for measuring torsional vibration resonance frequency in a dental implant, includes an anti-rotary horizontal double-winged component and a central bolt. The central bolt is configured to closely connect with the inner threads of the dental implant, such that the amplitude transformer can integrate with the dental implant sufficient to vibrate as an integral structure under energizing.
    Type: Grant
    Filed: September 1, 2014
    Date of Patent: April 24, 2018
    Assignee: Fourth Military Medical University of Chinese People's Liberation Army
    Inventors: Dehua Li, Yulong Tang, Bing Li
  • Publication number: 20180064343
    Abstract: The present invention relates to a torsional vibration resonance frequency measuring method and a novel amplitude transformer for assessing the stability of dental implants. In one example, a torsional vibration resonance frequency measuring method includes installing an amplitude transformer on a dental implant, energizing a torsional vibration mode, gathering resonance signals, and analyzing a resonance frequency. In another example, an amplitude transformer for measuring torsional vibration resonance frequency in a dental implant, includes an anti-rotary horizontal double-winged component and a central bolt. The central bolt is configured to closely connect with the inner threads of the dental implant, such that the amplitude transformer can integrate with the dental implant sufficient to vibrate as an integral structure under energizing.
    Type: Application
    Filed: November 13, 2017
    Publication date: March 8, 2018
    Inventors: Dehua LI, Yulong TANG, Bing LI
  • Publication number: 20160206201
    Abstract: The present invention relates to a torsional vibration resonance frequency measuring method and a novel amplitude transformer for assessing the stability of dental implants. In one example, a torsional vibration resonance frequency measuring method includes installing an amplitude transformer on a dental implant, energizing a torsional vibration mode, gathering resonance signals, and analyzing a resonance frequency. In another example, an amplitude transformer for measuring torsional vibration resonance frequency in a dental implant, includes an anti-rotary horizontal double-winged component and a central bolt. The central bolt is configured to closely connect with the inner threads of the dental implant, such that the amplitude transformer can integrate with the dental implant sufficient to vibrate as an integral structure under energizing.
    Type: Application
    Filed: September 1, 2014
    Publication date: July 21, 2016
    Inventors: Dehua LI, Yulong TANG, Bing LI
  • Patent number: 8720315
    Abstract: A combustion gas piston type movable guiding tube netting device includes a capture net (8), a traction head (6), a guiding tube (7), an igniter (3), a main gunpowder (5), a combustion gas generator (1) and a piston (2). The piston and the main gunpowder are placed in the combustion gas generator. The top of the piston contacts a triangular lug on the base of the guiding tube. The traction head is placed in the guiding tube, and another end of the traction head is tied on one corner of the capture net. When operating, the main gunpowder is ignited by the igniter, the resulting combustion gas pushes the piston to move, the piston pushes the guiding tube to move, and the combustion gas comes into the guiding tube and pushes the traction head to burst out the guiding tube, and the traction head drives the capture net to open. The combustion gas piston type movable guiding tube netting device has a quick expansion speed, and the area of the expansive capture net is big.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: May 13, 2014
    Assignee: Beijing Mechanical Equipment Institute
    Inventors: Hao Liu, Shuyong Han, Shengjie Wang, Xuyang Qiu, Aifeng Chen, Yulong Tang, Kegang Chi, Hejiu Wang, Chengshuai Su
  • Patent number: 8707847
    Abstract: A pollution-free liquid balancing device comprises a sealing bag (1), a front cover (2), a rear cover (3) and liquid balancing matter (4), wherein the sealing bag (1), the front cover (2) and the rear cover (3) are all plastic material. The sealing bag (1) is filled with the liquid balancing matter (4) inside, and plastically sealed under high temperature at both ends. The diameters of the front cover (2) and the rear cover (3) are matched with the inner diameter of a launch barrel (5), and the sealing bag (1) is provided between the front cover (2) and the rear cover (3). In an ordinary transportation state, the liquid balancing matter (4) is well sealed in the sealing bag (1), and a missile is launched forward by the propulsion of powder during launch, the sealing bag (1), the front cover (2) and the rear cover (3) crack instantaneously, and the liquid balancing matter (4) is ejected backward outside the barrel at high speed.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: April 29, 2014
    Assignee: Beijing Mechanical Equipment Institute
    Inventors: Shengjie Wang, Yajun Chen, Xuyang Qiu, Aifeng Chen, Yulong Tang, Shuyong Han
  • Publication number: 20140007758
    Abstract: A pollution-free liquid balancing device comprises a sealing bag (1), a front cover (2), a rear cover (3) and liquid balancing matter (4), wherein the sealing bag (1), the front cover (2) and the rear cover (3) are all plastic material. The sealing bag (1) is filled with the liquid balancing matter (4) inside, and plastically sealed under high temperature at both ends. The diameters of the front cover (2) and the rear cover (3) are matched with the inner diameter of a launch barrel (5), and the sealing bag (1) is provided between the front cover (2) and the rear cover (3). In an ordinary transportation state, the liquid balancing matter (4) is well sealed in the sealing bag (1), and a missile is launched forward by the propulsion of powder during launch, the sealing bag (1), the front cover (2) and the rear cover (3) crack instantaneously, and the liquid balancing matter (4) is ejected backward outside the barrel at high speed.
    Type: Application
    Filed: August 27, 2013
    Publication date: January 9, 2014
    Applicant: Beijing Mechanical Equipment Institute
    Inventors: Shengjie WANG, Yajun CHEN, Xuyang QIU, Aifeng CHEN, Yulong TANG, Shuyong HAN
  • Publication number: 20130340600
    Abstract: A combustion gas piston type movable guiding tube netting device includes a capture net (8), a traction head (6), a guiding tube (7), an igniter (3), a main gunpowder (5), a combustion gas generator (1) and a piston (2). The piston and the main gunpowder are placed in the combustion gas generator. The top of the piston contacts a triangular lug on the base of the guiding tube. The traction head is placed in the guiding tube, and another end of the traction head is tied on one corner of the capture net. When operating, the main gunpowder is ignited by the igniter, the resulting combustion gas pushes the piston to move, the piston pushes the guiding tube to move, and the combustion gas comes into the guiding tube and pushes the traction head to burst out the guiding tube, and the traction head drives the capture net to open. The combustion gas piston type movable guiding tube netting device has a quick expansion speed, and the area of the expansive capture net is big.
    Type: Application
    Filed: August 26, 2013
    Publication date: December 26, 2013
    Applicant: Beijing Mechanical Equipment Institute
    Inventors: Hao LIU, Shuyong HAN, Shengjie WANG, Xuyang QIU, Aifeng CHEN, Yulong TANG, Kegang CHI, Hejiu WANG, Chengshuai SU
  • Patent number: 8550346
    Abstract: Systems and methods allow for intercepting a small, low-altitude and low-velocity target. A system includes a detecting apparatus, a directing control apparatus, an aiming control apparatus, a launch control apparatus, a launching device, and an intercepting device. A method includes: searching and tracking a target by the detecting apparatus in a networking mode, or by the aiming control apparatus in a single-soldier mode; sending target information to the launch control apparatus; performing a trajectory calculation by the launch control apparatus; and launching the intercepting device by the launching device to intercept the target. A low-cost system with a short response time can thus be realized. The target falls with the net at a low velocity under a parachute, and this is desirable in a city environment.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: October 8, 2013
    Assignee: Beijing Mechanical Equipment Institute
    Inventors: Hao Liu, Shengjie Wang, Xuchang Ding, Xiaoming Wei, Shuyong Han, Xuyang Qiu, Kegang Chi, Yan Shen, Aifeng Chen, Yulong Tang