Patents by Inventor Yuma Kurakata

Yuma Kurakata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230399632
    Abstract: The present invention relates to glucoamylase variants having improved thermostability and compositions comprising such variants. The present invention further relates to polynucleotides encoding such variants, vectors and host cells comprising genes encoding such variants, which may also enable the production of such variants. The present invention also relates to methods of liquefying starch-containing materials using or applying the variants or compositions, as well as the saccharification thus produced by the method. The present invention also relates to methods of saccharifying starch-containing materials using or applying the variants or compositions, as well as the saccharides thus produced by the method. The present invention further relates to processes for producing fermentation products from starch-containing or cellulosic-containing material, as well as an enzyme blend or composition, or a recombinant host cell or fermenting organism suitable for use in processes of the invention.
    Type: Application
    Filed: November 2, 2021
    Publication date: December 14, 2023
    Applicant: Novozymes A/S
    Inventors: Yuma Kurakata, Aki Tomiki-Hashizume
  • Publication number: 20230023446
    Abstract: The present invention relates to processes for producing fermentation products from starch-containing material, wherein a thermostable xylanase that is resistance to inhibition by metal ions in the liquefying starch-containing material is present and/or added during liquefaction.
    Type: Application
    Filed: December 16, 2020
    Publication date: January 26, 2023
    Applicant: Novozymes A/S
    Inventors: Chee-Leong Soong, Yuma Kurakata, Brian Frederick Ohman
  • Patent number: 11447763
    Abstract: The present invention relates to protease variants, having improved properties compared to the parent protease, in particular variants of a serine protease belonging to family 53 derived from a strain of Meripilus giganteus. The variants according to the invention have in particular increased thermo-stability, e.g., increased residual activity after 30 min at a temperature in the range from 55 to 60° C. and/or increased thermal denaturation temperature, compared to the parent Meripilus giganteus protease. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: September 20, 2022
    Assignee: NOVOZYMES A/S
    Inventors: Keiichi Ayabe, Tomoko Matsui, Aki Tomiki, Yuma Kurakata, Esben P. Friis, Jens E. Nielsen, Roland Alexander Pache
  • Publication number: 20220154226
    Abstract: The present invention relates to a variant pullulanase, having increased thermo-stability and/or increased thermo-activity compared to a parent pullulanase, comprising a substitution at least a one position selected from a position corresponding to positions 432, 486, 370, 17, 77, 103, 106, 107, 190, 196, 197, 262, 279, 283, 321, 367, 375, 382, 399, 401, 402, 411, 412, 434, 435, 443, 446, 459, 460, 479, 490, 498, 514, 529, 531, 533, 541, 545, 581, 583, 595, 649, 665, 688, 700, 709, 804, 811 of SEQ ID NO: 1, and optionally a deletion of one or more, e.g., all amino acids at positions 821, 822, 823, 824, 825, 826, 827, and 828, wherein the variant has pullulanase activity, and wherein the variant has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to a parent alpha amylase selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5.
    Type: Application
    Filed: March 17, 2020
    Publication date: May 19, 2022
    Applicant: Novozymes A/S
    Inventors: Takashi Nakanishi, Aki Tomiki, Yuma Kurakata
  • Publication number: 20220090041
    Abstract: The present invention relates to protease variants, having improved properties compared to the parent protease, in particular variants of a serine protease belonging to family 53 derived from a strain of Meripilus giganteus. The variants according to the invention have in particular increased thermo-stability, e.g., increased residual activity after 30 min at a temperature in the range from 55 to 60° C. and/or increased thermal denaturation temperature, compared to the parent Meripilus giganteus protease. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Application
    Filed: December 9, 2021
    Publication date: March 24, 2022
    Applicant: Novozymes A/S
    Inventors: Keiichi Ayabe, Tomoko Matsui, Aki Tomiki-Hashizume, Yuma Kurakata, Esben Peter Friis, Jens Erik Nielsen, Roland Alexander Pache
  • Patent number: 11220679
    Abstract: The present invention relates to trehalase variants of the Myceliophthora sepedonium GH37 trehalase. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: January 11, 2022
    Assignee: NOVOZYMES A/S
    Inventors: Noriko Tsutsumi, Tomoko Matsui, Yuma Kurakata
  • Publication number: 20210139876
    Abstract: The present invention relates to protease variants, having improved properties compared to the parent protease, in particular variants of a serine protease belonging to family 53 derived from a strain of Meripilus giganteus. The variants according to the invention have in particular increased thermo-stability, e.g., increased residual activity after 30 min at a temperature in the range from 55 to 60° C. and/or increased thermal denaturation temperature, compared to the parent Meripilus giganteus protease. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Application
    Filed: January 14, 2021
    Publication date: May 13, 2021
    Applicant: NOVOZYMES A/S
    Inventors: Keiichi Ayabe, Tomoko Matsui, Aki Tomiki, Yuma Kurakata, Esben P. Friis, Jens E. Nielsen, Roland Alexander Pache
  • Publication number: 20210087543
    Abstract: The present invention relates to trehalase variants of the Myceliophthora sepedonium GH37 trehalase. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Application
    Filed: August 6, 2018
    Publication date: March 25, 2021
    Applicant: NOVOZYMES A/S
    Inventors: Noriko Tsutsumi, Tomoko Matsui, Yuma Kurakata
  • Patent number: 10927361
    Abstract: The present invention relates to protease variants, having improved properties compared to the parent protease, in particular variants of a serine protease belonging to family 53 derived from a strain of Meripilus giganteus. The variants according to the invention have in particular increased thermo-stability, e.g., increased residual activity after 30 min at a temperature in the range from 55 to 60° C. and/or increased thermal denaturation temperature, compared to the parent Meripilus giganteus protease. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: February 23, 2021
    Assignee: NOVOZYMES A/S
    Inventors: Keiichi Ayabe, Tomoko Matsui, Aki Tomiki, Yuma Kurakata, Esben P. Friis, Jens E. Nielsen, Roland Alexander Pache
  • Publication number: 20190352629
    Abstract: The present invention relates to protease variants, having improved properties compared to the parent protease, in particular variants of a serine protease belonging to family 53 derived from a strain of Meripilus giganteus. The variants according to the invention have in particular increased thermo-stability, e.g., increased residual activity after 30 min at a temperature in the range from 55 to 60° C. and/or increased thermal denaturation temperature, compared to the parent Meripilus giganteus protease. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Application
    Filed: July 14, 2017
    Publication date: November 21, 2019
    Applicant: NOVOZYMES A/S
    Inventors: Keiichi Ayabe, Tomoko Matsui, Aki Tomiki, Yuma Kurakata, Esben Peter Friis, Jens Erik Nielsen, Roland Alexander Pache