Patents by Inventor Yumiko Nakamura

Yumiko Nakamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060041884
    Abstract: A formal purchase request of the bundled software is transmitted to a server retained by a software manufacturer and a confirmation response to the formal purchase is received, and a provision confirmation request of the bundled software is transmitted to a server retained by an apparatus manufacturer and a provision confirmation response is received, and an expansion function of the bundled software is made available when both of the confirmation response to the formal purchase from the server retained by the software manufacturer and the provision confirmation response from the server retained by the apparatus manufacturer have been received.
    Type: Application
    Filed: November 24, 2004
    Publication date: February 23, 2006
    Applicant: FUJITSU LIMITED
    Inventor: Yumiko Nakamura
  • Patent number: 5932513
    Abstract: A container packed with a mixture of powders classified respectively into two or at least three particle-size distribution groups which are different in average particle size, the powders comprising a hydrogen absorbing alloy singly or the combination of such an alloy and a substance not absorbing hydrogen. The mixture is at least 0.03 to not greater than 0.50 in the ratio d.sub.2 /d.sub.1 wherein d.sub.1 is the average particle size of the powder having the particle-size distribution of the largest average particle size, and d.sub.2 is the average particle size of the powder having the particle-size distribution of the second largest average particle size. The weight ratio of the powder to the total weight of the powders is greater when that powder has a particle-size distribution of larger average particle size.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: August 3, 1999
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hiroshi Nakamura, Shin Fujitani, Yumiko Nakamura, Hiroshi Watanabe, Ikuo Yonezu, Takahiro Yonesaki, Kouichi Nishimura
  • Patent number: 5908487
    Abstract: A hydrogen absorbing alloy-packed container packed with a mixture of powders classified respectively into at least two particle-size distribution groups, each of which is different in mean particle size, the powders comprising a hydrogen absorbing alloy singly or the combination of a hydrogen absorbing alloy and a substance not absorbing hydrogen, the mixture having a ratio r.sub.N+1 /r.sub.N, wherein r.sub.N is the mean particle size of the powder having a particle-size distribution of the Nth largest mean particle size, N being an integer of not smaller than 1, and r.sub.N+1 is the mean particle size of the powder having a particle-size distribution of the (N+1)th largest mean particle size, of at least 0.03 to not greater than 0.50. The alloy powders can be selected from the group consisting of lanthanum-nickel, mischmetal-nickel, iron titanium and titanium manganese.
    Type: Grant
    Filed: March 21, 1997
    Date of Patent: June 1, 1999
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Koichi Nishimura, Takahiro Yonesaki, Shin Fujitani, Hiroshi Nakamura, Yumiko Nakamura, Ikuo Yonezu, Hiroshi Watanabe
  • Patent number: 5900558
    Abstract: A container packed with a mixture of powders classified respectively into two or at least three particle-size distribution groups which are different in average particle size, the powders comprising a hydrogen absorbing alloy singly or the combination of such an alloy and a substance not absorbing hydrogen. The mixture is at least 0.03 to not greater than 0.50 in the ratio d.sub.2 /d.sub.1 wherein d.sub.1 is the average particle size of the powder having the particle-size distribution of the largest average particle size, and d.sub.2 is the average particle size of the powder having the particle-size distribution of the second largest average particle size. The weight ratio of the powder to the total weight of the powders is greater when that powder has a particle-size distribution of larger average particle size.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: May 4, 1999
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hiroshi Nakamura, Shin Fujitani, Yumiko Nakamura, Hiroshi Watanabe, Ikuo Yonezu, Takahiro Yonesaki, Kouichi Nishimura
  • Patent number: 5851690
    Abstract: A hydrogen absorbing alloy for use in an environment where the alloy has the possibility of contacting oxygen is capable of inhibiting impairment of the hydrogen absorbing ability thereof when coming into contact with oxygen. The alloy has a composition represented in atomic ratio by Ti.sub.1-x Y.sub.x Mn.sub.y wherein x and y are in the range of 0<x.ltoreq.0.2 and 1.5.ltoreq.y.ltoreq.2.0, respectively, and comprises a C14-type crystal structure of Laves phase, the Laves phase having a segregaton phase of high Y concentration. Ti can be replaced by Hf and/or Zr within the range of over 0 to not greater than (1-x)/2 included in 1-x for the Ti atom. Mn can be replaced by V or Fe within the range of over 0 to not greater than y/2 included in y for the Mn atom.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: December 22, 1998
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yumiko Nakamura, Hiroshi Nakamura, Maki Kamikawa, Hiroshi Watanabe, Shin Fujitani, Ikuo Yonezu
  • Patent number: 5841043
    Abstract: A shaped body of hydrogen absorbing alloy prepared by pressing a mixture of a hydrogen absorbing alloy powder A having a first particle-size distribution, a hydrogen absorbing alloy powder B having a second particle-size distribution and a binder C, the powder A being larger than the powder B in mean particle size, the mixture being at least 0.03 to not gerater than 0.50 in the mean particle size ratio r.sub.B /r.sub.A of the powder B to the powder A wherein r.sub.A and r.sub.B are the mean particle sizes of the respective powders A and B. The hydrogen absorbing alloy of the powder B is higher than the hydrogen absorbing alloy of the powder A in the rate of progress of pulverization resulting from absorption and desorption of hydrogen.
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: November 24, 1998
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Koichi Nishimura, Takahiro Yonesaki, Shin Fujitani, Hiroshi Nakamura, Yumiko Nakamura, Ikuo Yonezu, Hiroshi Watanabe
  • Patent number: 5688341
    Abstract: A hydrogen-absorbing alloy electrode utilizes as an electrode material a hydrogen-absorbing alloy having selectively oriented crystals, which is expressed in terms of a specific maximum value obtained from analysis of powder X-ray diffractometry. This electrode, in which the hydrogen-absorbing alloy used is hardly pulverized upon repeated charge-discharge cycles and oxidation thereof is suppressed, gives metal hydride alkaline secondary batteries having excellent cycle characteristics. A method for evaluating hydogen-absorbing alloys for electrode comprises, utilizing the fact that there exists a clear relationship between specific parameters obtained by analyzing data based on the hydrogen-absorbing alloy to be evaluated and the characteristics of the electrode obtained therefrom, preparing and using analytical curves with the specific parameters.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: November 18, 1997
    Assignee: Sanyo Electric Co. Ltd
    Inventors: Takahiro Isono, Hiroshi Watanabe, Shin Fujitani, Hiroshi Nakamura, Yumiko Nakamura, Ikuo Yonezu
  • Patent number: 5662729
    Abstract: A shaped body of hydrogen absorbing alloy prepared by pressing a mixture of a hydrogen absorbing alloy powder A having a first particle-size distribution, a hydrogen absorbing alloy powder B having a second particle-size distribution and a binder C. The powder A is larger than the powder B in mean particle size. The mixture has a mean particle size ratio r.sub.B /r.sub.A of the powder B to the powder A, wherein r.sub.A and r.sub.B are the mean particle sizes of the respective powders A and B of at least 0.03 to not greater than 0.50. The hydrogen absorbing alloy of the powder B has a higher rate of progress of pulverization resulting from absorption and desorption of hydrogen than the hydrogen absorbing alloy of the powder A.
    Type: Grant
    Filed: October 3, 1995
    Date of Patent: September 2, 1997
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Koichi Nishimura, Takahiro Yonesaki, Shin Fujitani, Hiroshi Nakamura, Yumiko Nakamura, Ikuo Yonezu, Hiroshi Watanabe
  • Patent number: 5591897
    Abstract: The invention relates to an apparatus for measuring the gas absorbing and/or desorbing characteristics of a substance having a property to absorb a gas. The apparatus comprises a sample container for containing the substance, a gas storage connected to the sample container for storing the gas until a predetermined pressure is reached, a gas supply source for supplying the gas to the gas storage, a first valve provided on a line connecting the gas supply source to the gas storage, a second valve provided on the line between the first valve and the gas storage, and a third valve provided on a gas discharge line connected to the line between the first and second valves, the first to third valves being each a two-position valve having an open position and a closed position, the valves defining a region thereby surrounded and serving as a preliminary storage for temporarily holding the gas when the gas is supplied or discharged.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: January 7, 1997
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hiroshi Nakamura, Shin Fujitani, Yumiko Nakamura, Takahiro Yonesaki, Koichi Nishimura, Teruhiko Imoto, Ikuo Yonezu
  • Patent number: 5500655
    Abstract: An information processor equipment in use for a terminal key locking system includes: an input key device for inputting data; a terminal key locking unit for locking the input key and generating a plurality of mode signals concurrently with the locking; a plurality of gates corresponding to the modes and connected to a plurality of controllers the output of which is connected to a display control unit; a display unit connected to the display controller, for displaying picture signals; a first memory device connected to the display control unit for saving operating display information; and a second memory device connected to the display control unit for storing in advance picture signals representing each discriminated mode signal; wherein the previously stored picture signals are displayed in correspondence to one of the modes and when the lock is released, an original operative picture signal is returned to the display unit, and wherein the gates are respectively operated according to incoming mode signals.
    Type: Grant
    Filed: August 26, 1994
    Date of Patent: March 19, 1996
    Assignee: Fujitsu Limited
    Inventors: Minae Isawa, Yumiko Nakamura