Patents by Inventor Yunchen Qiu
Yunchen Qiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240006000Abstract: A nonvolatile memory (NVM) device having a programmable, self-tracking reference current design and a method of fabricating the same. A differential reference cell corresponding to a particular wordline is operable to generate a total reference cell current comprising an ON current and an OFF current driven by respective reference memory cells that form the differential reference cell. A reference current generator is operable to provide a scalable fraction of the total reference cell current as a reference current (IREF) for facilitating sensing operations by a sense amplifier block.Type: ApplicationFiled: June 30, 2022Publication date: January 4, 2024Inventor: Yunchen Qiu
-
Patent number: 11495301Abstract: In one example a semiconductor device has a data latch that includes first and second transmission gates and first and second inverters. The first inverter is connected between a first terminal of the first transmission gate and a first terminal of the second transmission gate. The second inverter is connected between a second terminal of the first transmission gate and a second terminal of the second transmission gate. The data latch is configured to store a datum received at the connection between the first transmission gate and the second inverter, and to store a datum received at the connection between the second transmission gate and the first inverter.Type: GrantFiled: March 31, 2021Date of Patent: November 8, 2022Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Xiaowei Deng, Yunchen Qiu, David Joseph Toops
-
Publication number: 20210304824Abstract: In one example a semiconductor device has a data latch that includes first and second transmission gates and first and second inverters. The first inverter is connected between a first terminal of the first transmission gate and a first terminal of the second transmission gate. The second inverter is connected between a second terminal of the first transmission gate and a second terminal of the second transmission gate. The data latch is configured to store a datum received at the connection between the first transmission gate and the second inverter, and to store a datum received at the connection between the second transmission gate and the first inverter.Type: ApplicationFiled: March 31, 2021Publication date: September 30, 2021Inventors: Xiaowei Deng, Yunchen Qiu, David Joseph Toops
-
Patent number: 10192629Abstract: A programmable memory including a self-latching read data path. A sense amplifier senses the voltage level at a bit line, the bit line communicating the data state of a selected memory cell in its associated column. A data latch coupled to the output of the sense amplifier passes the sensed data state. Set-reset logic is provided that receives the output of the data latch in the read data path and, in response to a transition of the data state in a read cycle, latches the data latch and isolates it from the sense amplifier. The set-reset logic resets the data latch at the start of the next read cycle. In some embodiments, a timer is provided so that the latch is reset after a time-out period in a long read cycle in which no data transition occurs.Type: GrantFiled: January 15, 2018Date of Patent: January 29, 2019Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Yunchen Qiu, David J. Toops, Harold L. Davis
-
Publication number: 20180137928Abstract: A programmable memory including a self-latching read data path. A sense amplifier senses the voltage level at a bit line, the bit line communicating the data state of a selected memory cell in its associated column. A data latch coupled to the output of the sense amplifier passes the sensed data state. Set-reset logic is provided that receives the output of the data latch in the read data path and, in response to a transition of the data state in a read cycle, latches the data latch and isolates it from the sense amplifier. The set-reset logic resets the data latch at the start of the next read cycle. In some embodiments, a timer is provided so that the latch is reset after a time-out period in a long read cycle in which no data transition occurs.Type: ApplicationFiled: January 15, 2018Publication date: May 17, 2018Inventors: Yunchen Qiu, David J. Toops, Harold L. Davis
-
Patent number: 9881687Abstract: A programmable memory including a self-latching read data path. A sense amplifier senses the voltage level at a bit line, the bit line communicating the data state of a selected memory cell in its associated column. A data latch coupled to the output of the sense amplifier passes the sensed data state. Set-reset logic is provided that receives the output of the data latch in the read data path and, in response to a transition of the data state in a read cycle, latches the data latch and isolates it from the sense amplifier. The set-reset logic resets the data latch at the start of the next read cycle. In some embodiments, a timer is provided so that the latch is reset after a time-out period in a long read cycle in which no data transition occurs.Type: GrantFiled: August 25, 2016Date of Patent: January 30, 2018Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Yunchen Qiu, David J. Toops, Harold L. Davis
-
Patent number: 9715943Abstract: Data words to be written to a memory location are delta encoded in multi-write avoidance (“MWA”) code words. MWA code words result in no re-writing of single-bit storage cells containing logical “0's” to a “0” state and no re-writing of logical “1's” to cells that have already been written once to a logical “1.” Potential MWA code words stored in a look-up table (“LUT”) are indexed by a difference word DELTA_D. DELTA_D represents a bitwise difference (“delta”) between a data word currently stored at the memory location and a new data word (“NEW_D”) to be stored at the memory location. Validation and selection logic chooses an MWA code word representing NEW_D to be written if the MWA code word does not violate the principle of multi-write avoidance. Some embodiments generate the MWA code words using a pattern generator rather than indexing the MWA code words from a LUT.Type: GrantFiled: August 12, 2015Date of Patent: July 25, 2017Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Yuming Zhu, Manish Goel, Clive Bittlestone, Yunchen Qiu, Sai Zhang
-
Publication number: 20170178742Abstract: A programmable memory including a self-latching read data path. A sense amplifier senses the voltage level at a bit line, the bit line communicating the data state of a selected memory cell in its associated column. A data latch coupled to the output of the sense amplifier passes the sensed data state. Set-reset logic is provided that receives the output of the data latch in the read data path and, in response to a transition of the data state in a read cycle, latches the data latch and isolates it from the sense amplifier. The set-reset logic resets the data latch at the start of the next read cycle. In some embodiments, a timer is provided so that the latch is reset after a time-out period in a long read cycle in which no data transition occurs.Type: ApplicationFiled: August 25, 2016Publication date: June 22, 2017Inventors: Yunchen Qiu, David J. Toops, Harold L. Davis
-
Publication number: 20170047130Abstract: Data words to be written to a memory location are delta encoded in multi-write avoidance (“MWA”) code words. MWA code words result in no re-writing of single-bit storage cells containing logical “0's” to a “0” state and no re-writing of logical “1's” to cells that have already been written once to a logical “1.” Potential MWA code words stored in a look-up table (“LUT”) are indexed by a difference word DELTA_D. DELTA_D represents a bitwise difference (“delta”) between a data word currently stored at the memory location and a new data word (“NEW_D”) to be stored at the memory location. Validation and selection logic chooses an MWA code word representing NEW_D to be written if the MWA code word does not violate the principle of multi-write avoidance. Some embodiments generate the MWA code words using a pattern generator rather than indexing the MWA code words from a LUT.Type: ApplicationFiled: August 12, 2015Publication date: February 16, 2017Inventors: Yuming Zhu, Manish Goel, Clive Bittlestone, Yunchen Qiu, Sai Zhang
-
Patent number: 8324663Abstract: One-time programmable (OTP) Electronically Programmable Read-Only Memories (EPROMs) have been used in a number of applications for many years. One drawback with these OTP EPROMs is that these nonvolatile memories tend to be slow and/or may use a considerable amount of area. Here, however, a bit cell is provided that employs a compact dual cell, which generally includes two OTP cells. These OTP cells are generally arranged in differential configuration to increase speed and are arranged to have a small impact on area.Type: GrantFiled: April 1, 2011Date of Patent: December 4, 2012Assignee: Texas Instruments IncorporatedInventors: Yunchen Qiu, Harold L. Davis
-
Publication number: 20120248538Abstract: One-time programmable (OTP) Electronically Programmable Read-Only Memories (EPROMs) have been used in a number of applications for many years. One drawback with these OTP EPROMs is that these nonvolatile memories tend to be slow and/or may use a considerable amount of area. Here, however, a bit cell is provided that employs a compact dual cell, which generally includes two OTP cells. These OTP cells are generally arranged in differential configuration to increase speed and are arranged to have a small impact on area.Type: ApplicationFiled: April 1, 2011Publication date: October 4, 2012Applicant: Texas Instruments IncorporatedInventors: Yunchen Qiu, Harold L. Davis
-
Patent number: 7804699Abstract: A segmented ternary content addressable memory (TCAM) search architecture is disclosed. In one embodiment, a TCAM device with a row of TCAM cells includes a first segment of the TCAM cells for determining a match of corresponding search bits of a search string with a first portion of a stored string in the first segment of the TCAM cells, an evaluation module for generating a search enable signal if the match of the corresponding search bits with the first portion of the stored string is determined, and a second segment of the TCAM cells for determining a match of remaining search bits of the search string with a remaining portion of the stored string in response to the search enable signal.Type: GrantFiled: December 26, 2008Date of Patent: September 28, 2010Assignee: Texas Instruments IncorporatedInventors: Sharad Kumar Gupta, Morris Dwayne Ward, Rashmi Sachan, Dharmesh Kumar Sonkar, Sunil Kumar Misra, Yunchen Qiu, Anuroop S. S. R Vuppala
-
Publication number: 20100165690Abstract: A segmented ternary content addressable memory (TCAM) search architecture is disclosed. In one embodiment, a TCAM device with a row of TCAM cells includes a first segment of the TCAM cells for determining a match of corresponding search bits of a search string with a first portion of a stored string in the first segment of the TCAM cells, an evaluation module for generating a search enable signal if the match of the corresponding search bits with the first portion of the stored string is determined, and a second segment of the TCAM cells for determining a match of remaining search bits of the search string with a remaining portion of the stored string in response to the search enable signal.Type: ApplicationFiled: December 26, 2008Publication date: July 1, 2010Inventors: Sharad Kumar Gupta, Morris Dwayne Ward, Rashmi Sachan, Dharmesh Kumar Sonkar, Sunil Kumar Misra, Yunchen Qiu, Anuroop S.S.R. Vuppala
-
Patent number: 7233194Abstract: This invention is a new CMOS voltage booster (20) having an output which can be used in memories to boost the word line voltage above VDD or other voltage boosting applications. The CMOS booster includes a NMOS FET (MN1) to charge a boosting capacitor (C1) to VDD at the end of each memory access and includes a PMOS FET (MP1, MP2) to keep the voltage at the output at VDD during standby. By using this combination, the word line rise time, the size of the booster, and the power consumption during access are significantly reduced. The gate of the NMOS FET (MN1) is boosted above VDD+Vthn by a small capacitor (C2) to charge the word line boosting capacitor to VDD at the end of each memory access. The small capacitor (C2) is pre-charged to VDD by a NMOSFET (MN2) whose gate is connected to the word line boosting capacitor. The gate of each PMOS FET (MP1, MP2) is shorted to its source to turn if off during boostenig. Transistor (MP3) facilitates boosting the NMOS FET (MN1) above VDD.Type: GrantFiled: October 9, 2003Date of Patent: June 19, 2007Assignee: Texas Instruments IncorporatedInventors: Xiao Hong Du, Jarrod Eliason, Yunchen Qiu, Bill Kraus
-
Patent number: 6909318Abstract: This invention is a new CMOS voltage booster (20) having an output which can be used in memories to boost the word line voltage above VDD or other voltage boosting applications. The CMOS booster includes a NMOS FET (MN1) to charge a boosting capacitor (C1) to VDD at the end of each memory access and includes a PMOS FET (MP1, MP2) to keep the voltage at the output at VDD during standby. By using this combination, the word line rise time, the size of the booster, and the power consumption during access are significantly reduced. The gate of the NMOS FET (MN1) is boosted above VDD+Vthn by a small capacitor (C2) to charge the word line boosting capacitor to VDD at the end of each memory access. The small capacitor (C2) is pre-charged to VDD by a NMOSFET (MN2) whose gate is connected to the word line boosting capacitor. The gate of each PMOS FET (MP1, MP2) is shorted to ists source to turn if off during boostenig. Ttransistor (MP3) facilitates boosting the NMOS FET (MN1) above VDD.Type: GrantFiled: August 27, 2003Date of Patent: June 21, 2005Assignee: Texas Instruments IncorporatedInventors: Xiao Hong Du, Jarrod Eliason, Yunchen Qiu, Bill Kraus
-
Patent number: 6864738Abstract: This invention is a new CMOS voltage booster (20) having an output which can be used in memories to boost the word line voltage above VDD or other voltage boosting applications. One key idea in this CMOS booster is to use a NMOS FET (MN1) to charge the boosting capacitor (C1) to VDD at the end of each memory access and to use a PMOS FET (MP1, MP2) to keep the voltage at the output at VDD during standby. By using this combination, the word line rise time, the size of the booster, and the power consumption during access are significantly reduced. The gate of the NMOS FET is boosted above VDD+Vthn by a small capacitor (C2) to charge the word line boosting capacitor to VDD at the end of each memory access. The small capacitor (C2) is pre-charged to VDD by a NMOSFET (MN2) whose gate is connected to the word line boosting capacitor. The gate of the PMOS FET is shorted to its source to turn it off during boosting.Type: GrantFiled: January 6, 2003Date of Patent: March 8, 2005Assignee: Texas Instruments IncorporatedInventors: Xiao Hong Du, Jarrod Eliason, Yunchen Qiu, Bill Kraus
-
Publication number: 20040130383Abstract: This invention is a new CMOS voltage booster (20) having an output which can be used in memories to boost the word line voltage above VDD or other voltage boosting applications. The CMOS booster includes a NMOS FET (MN1) to charge a boosting capacitor (C1) to VDD at the end of each memory access and includes a PMOS FET (MP1, MP2) to keep the voltage at the output at VDD during standby. By using this combination, the word line rise time, the size of the booster, and the power consumption during access are significantly reduced. The gate of the NMOS FET (MN1) is boosted above VDD+Vthn by a small capacitor (C2) to charge the word line boosting capacitor to VDD at the end of each memory access. The small capacitor (C2) is pre-charged to VDD by a NMOSFET (MN2) whose gate is connected to the word line boosting capacitor. The gate of each PMOS FET (MP1, MP2) is shorted to its source to turn if off during boostenig. Transistor (MP3) facilitates boosting the NMOS FET (MN1) above VDD.Type: ApplicationFiled: October 9, 2003Publication date: July 8, 2004Inventors: Xiao Hong Du, Jarrod Eliason, Yunchen Qiu, Bill Kraus
-
Publication number: 20040130382Abstract: This invention is a new CMOS voltage booster (20) having an output which can be used in memories to boost the word line voltage above VDD or other voltage boosting applications. The CMOS booster includes a NMOS FET (MN1) to charge a boosting capacitor (C1) to VDD at the end of each memory access and includes a PMOS FET (MP1, MP2) to keep the voltage at the output at VDD during standby. By using this combination, the word line rise time, the size of the booster, and the power consumption during access are significantly reduced. The gate of the NMOS FET (MN1) is boosted above VDD+Vthn by a small capacitor (C2) to charge the word line boosting capacitor to VDD at the end of each memory access. The small capacitor (C2) is pre-charged to VDD by a NMOSFET (MN2) whose gate is connected to the word line boosting capacitor. The gate of each PMOS FET (MP1, MP2) is shorted to ists source to turn if off during boostenig. Ttransistor (MP3) facilitates boosting the NMOS FET (MN1) above VDD.Type: ApplicationFiled: August 27, 2003Publication date: July 8, 2004Inventors: Xiao Hong Du, Jarrod Eliason, Yunchen Qiu, Bill Kraus
-
Publication number: 20040130381Abstract: This invention is a new CMOS voltage booster (20) having an output which can be used in memories to boost the word line voltage above VDD or other voltage boosting applications. One key idea in this CMOS booster is to use a NMOS FET (MN1) to charge the boosting capacitor (C1) to VDD at the end of each memory access and to use a PMOS FET (MP1, MP2) to keep the voltage at the output at VDD during standby. By using this combination, the word line rise time, the size of the booster, and the power consumption during access are significantly reduced. The gate of the NMOS FET is boosted above VDD+Vthn by a small capacitor (C2) to charge the word line boosting capacitor to VDD at the end of each memory access. The small capacitor (C2) is pre-charged to VDD by a NMOSFET (MN2) whose gate is connected to the word line boosting capacitor. The gate of the PMOS FET is shorted to its source to turn it off during boosting.Type: ApplicationFiled: January 6, 2003Publication date: July 8, 2004Inventors: Xiao Hong Du, Jarrod Eliason, Yunchen Qiu, Bill Kraus