Patents by Inventor Yunfeng Gu

Yunfeng Gu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140339194
    Abstract: Described herein are aqueous acidic glass etching solutions or media comprising HF and H2SO4, wherein HF is present in concentrations not exceeding about 1.3M. The etching solutions are used to treat glass articles such as thin glass sheets at above-ambient temperatures to etch slight thicknesses of surface glass therefrom, the etching solutions exhibiting improved stability against dissolved glass precipitation and rapid glass removal rates at slightly elevated temperatures.
    Type: Application
    Filed: December 10, 2012
    Publication date: November 20, 2014
    Applicant: Corning Incorporated
    Inventors: Yunfeng Gu, Jun Hou, Timothy James Orcutt, Daniel Arthur Sternquist, Jeffery Scott Stone
  • Patent number: 8784541
    Abstract: Composite-membrane monoliths include a cordierite monolith having a cordierite-ceramic composite membrane bonded to surfaces thereof with a surface median pore size. The cordierite-ceramic composite membrane has membrane surfaces with a membrane median pore size of 0.3 ?m or less. The cordierite-ceramic composite membrane may be a composite formed by firing the cordierite monolith subsequent to applying a cordierite-ceramic composite slip to surfaces thereof. The cordierite-ceramic slip may include cordierite particles and ceramic particles. The cordierite particles may have a cordierite median particle size smaller than the surface median pore size. The ceramic particles may have a ceramic median particle size smaller than the cordierite median particle size.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: July 22, 2014
    Assignee: Corning Incorporated
    Inventors: Joel Edward Clinton, Yunfeng Gu
  • Patent number: 8481110
    Abstract: Methods of making inorganic membranes, for example, methods of making gamma-alumina inorganic membranes which can be useful for, for example, molecular level gas separations and/or liquid filtration are described.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: July 9, 2013
    Assignee: Corning Incorporated
    Inventor: Yunfeng Gu
  • Publication number: 20130122196
    Abstract: A coating apparatus includes modular interfaces and substrate receptors for accommodating various shapes and sizes of monolith substrates when coating layers are applied onto the monolith substrates. The monolith substrates are laterally surrounded by an elastically deformable sleeve that prevents lateral leakage of a vacuum out of the monolith substrate when a vacuum is applied to opposing ends of the monolith substrate, thereby eliminating needs for bulky vacuum chambers. The coating apparatus also includes valves and control apparatus that enable excess precursor liquid to be drained from monolith channels in-situ, without the use of additional spin-drying steps. Coating methods for using the coating apparatus are provided.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 16, 2013
    Inventors: Joel Edward Clinton, Curtis Robert Fekety, Yunfeng Gu
  • Publication number: 20130118355
    Abstract: Composite-membrane monoliths include a cordierite monolith having a cordierite-ceramic composite membrane bonded to surfaces thereof with a surface median pore size. The cordierite-ceramic composite membrane has membrane surfaces with a membrane median pore size of 0.3 ?m or less. The cordierite-ceramic composite membrane may be a composite formed by firing the cordierite monolith subsequent to applying a cordierite-ceramic composite slip to surfaces thereof. The cordierite-ceramic slip may include cordierite particles and ceramic particles. The cordierite particles may have a cordierite median particle size smaller than the surface median pore size. The ceramic particles may have a ceramic median particle size smaller than the cordierite median particle size.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 16, 2013
    Inventors: Joel Edward Clinton, Yunfeng Gu
  • Publication number: 20130045139
    Abstract: A method of treating a particulate filter includes introducing a work fluid, such as water, into one or more channels of the filter and then removing the work fluid in a vaporized state. The channels contain an amount of ash and the density of the ash is greater subsequent to the removal of the work fluid than prior to the introduction of the work fluid.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Inventors: Thorsten Rolf Boger, Yunfeng Gu, Suhao He
  • Publication number: 20120229084
    Abstract: A system and method for enabling compatibility of wired charging with wireless charging are disclosed. The system includes an interface circuit, a wired charging unit and a wireless charging unit. The interface circuit is configured to connect the wired charging unit and the wireless charging unit to a power management unit; the wired charging unit is connected to the power management unit via an interface circuit and is configured to charge the power management unit by using a charging circuit in the power management unit; and the wireless charging unit is connected to the power management unit via the interface circuit and is configured to charge the power management unit by using the same charging circuit as that used by the wired charging unit.
    Type: Application
    Filed: March 15, 2010
    Publication date: September 13, 2012
    Applicant: ZTE CORPORATION
    Inventor: Yunfeng Gu
  • Publication number: 20120159938
    Abstract: Wall flow membrane filters, fabricated by masking a first subset of the channels at one or both ends of a honeycomb body comprising an array of open-ended through-channels separated by porous channel walls, applying a membrane-forming composition to the porous channel walls of a second subset of the channels, curing the membrane-forming composition to provide a wall-adhering fluid-permeable membrane; and then plugging the first subset of channels at a first end of the body and the second subset of channels at a second end of the body, are useful in exhaust systems of improved particulate filtration efficiency for gasoline direct injection or diesel engines.
    Type: Application
    Filed: September 23, 2010
    Publication date: June 28, 2012
    Inventors: Curtis Robert Fekety, Yunfeng Gu, Irene Mona Peterson
  • Patent number: 8101010
    Abstract: A porous structure sealed at both ends for use in a gas separation module; and a method for separating components of a gas stream.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: January 24, 2012
    Assignee: Corning Incorporated
    Inventors: Joel Edward Clinton, Curtis Robert Fekety, Yunfeng Gu, Zhen Song
  • Publication number: 20110300335
    Abstract: Described herein is a cordierite membrane coated on a monolith substrate formed from cordierite. The membrane coating is formed from cordierite particles which have been processed to have a median particle size diameter of between 1 and 3 microns with a narrow particle size distribution suitable for forming a cordierite membrane on a cordierite monolith substrate. After the cordierite membrane is formed on the cordierite monolith substrate, the cordierite membrane monolith has a pore size of less than 1 micron.
    Type: Application
    Filed: May 25, 2011
    Publication date: December 8, 2011
    Inventors: Joel Edward Clinton, Kenneth Joseph Drury, Yunfeng Gu, Michael Elwyn Saunders
  • Publication number: 20110293917
    Abstract: A method is provided for making a porous inorganic membrane by using a mixture of an inorganic material, organic polymer particles and a solvent to form a slurry, the particles being non-spherical, distributing the slurry onto a surface, drying the slurry to remove the solvent and firing the dried slurry to produce the porous inorganic membrane. Examples of organic polymer particles include particles of acrylic. A substrate with a porous inorganic membrane disposed on the substrate is also provided, the inorganic membrane having an average thickness of from about 0.5 micron to about 30 microns, a porosity of from about 30% to about 65%, a median pore size (d50) of from about 0.01 micron to about 1 micron, and a value of (d90?d10)/d50 less than about 2, as measured by mercury porosimetry. An example of a substrate includes an inorganic porous support.
    Type: Application
    Filed: May 25, 2011
    Publication date: December 1, 2011
    Inventors: Dana Craig Bookbinder, Gary S. Calabrese, Yunfeng Gu, Jianguo Wang
  • Patent number: 7938894
    Abstract: The invention discloses a composition comprising a hybrid composite organic-inorganic membrane. The hybrid organic-inorganic membrane according to the present invention may comprise an amorphous porous layer incorporating organic functionalities. The amorphous porous layer may be deposited on a porous alumina substrate by chemical vapor deposition (CVD). The amorphous porous layer may comprise a single top-layer (STL), multiple top-layers (MTL) or mixed top-layers (XTL). The substrate may comprise a single layer or multiple graded layers of alumina.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: May 10, 2011
    Assignees: ConocoPhillips Company, Virginia Tech Intellectual Properties, Inc.
    Inventors: Shigeo Ted Oyama, Yunfeng Gu, Joe D. Allison, Garry C. Gunter, Scott A. Scholten
  • Publication number: 20110100900
    Abstract: A monolithic multi-channel substrate having a porous monolithic body or cross-flow filtration module defining a plurality of flow channels disposed in the body and extending from an upstream inlet or feed end to a downstream outlet or exhaust end. Porous channel walls surround each of the plurality of flow channels. The plurality of flow channels have a channel hydraulic diameter less than or equal to 1.1 mm. The porous body further comprises a networked pore structure of interconnected pores forming torturous fluid paths or conduits. The tortuous paths formed by the porous body provide a flow path for directing filtrate separated from a process stream to an exterior surface of the body.
    Type: Application
    Filed: April 28, 2009
    Publication date: May 5, 2011
    Inventors: Kenneth Joseph Drury, Yunfeng Gu, Wei Liu
  • Patent number: 7862648
    Abstract: Thin layers of a mixed composition are deposited on a porous substrate by chemical vapor deposition in an inert atmosphere at high temperature. The resulting membrane has excellent stability to water vapor at high temperatures. An exemplary membrane comprises an amorphous mixed-element surface layer comprising silica and at least one oxide of additional element, an optional porous substrate on which said surface layer is deposited, and a porous support on which said substrate or mixed-element surface layer is deposited, wherein the permeance of the membrane is higher than 1×10?7 mol m?2s?1Pa?1 and the selectivity of H2 over CO, CO2, and CH4 is larger than 100, and wherein the H2 permeance of the membrane after exposure to a stream containing 60 mol % water vapor at 673 K for 120 h is at least 50% of its initial H2 permeance.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: January 4, 2011
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: S. Ted Oyama, Yunfeng Gu
  • Publication number: 20100300294
    Abstract: A porous structure sealed at both ends for use in a gas separation module; and a method for separating components of a gas stream.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 2, 2010
    Inventors: Joel Edward Clinton, Curtis Robert Fekety, Yunfeng Gu, Zheng Song
  • Publication number: 20100251888
    Abstract: An oxygen-ion conducting membrane structure comprising a monolithic inorganic porous support, optionally one or more porous inorganic intermediate layers, and an oxygen-ion conducting ceramic membrane. The oxygen-ion conducting hybrid membrane is useful for gas separation applications, for example O2 separation.
    Type: Application
    Filed: November 14, 2008
    Publication date: October 7, 2010
    Inventors: Curtis Robert Fekety, Yunfeng Gu, Lin He, Youchun Shi, Zhen Song
  • Patent number: 7767257
    Abstract: Methods for preparing porous inorganic coatings on porous supports using certain pore formers, and porous supports coated with porous inorganic coatings. The porous inorganic coatings may serve as membranes useful in, for example, liquid-liquid, liquid-particulate, gas-gas, or gas-particulate separation applications.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 3, 2010
    Assignee: Corning Incorporated
    Inventors: Yunfeng Gu, Wei Liu, Todd P St Clair, Jianguo Wang
  • Patent number: 7767256
    Abstract: Methods for preparing porous inorganic coatings on porous supports using certain pore fillers, and porous supports coated with porous inorganic coatings. The porous inorganic coatings may serve as membranes useful in, for example, liquid-liquid, liquid-particulate, gas-gas, or gas-particulate separation applications.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 3, 2010
    Assignee: Corning Incorporated
    Inventors: Yunfeng Gu, Wei Liu, Jianguo Wang
  • Publication number: 20100126133
    Abstract: A particulate filter is provided having a filter body with at least one porous wall, and a porous coating on the wall, the coating having a median pore diameter less than 20 microns and a coating pore size deviation of less than 3 times the coating median pore diameter, and the coating having an average thickness of less than 50 microns. A method of manufacturing a particulate filter is also disclosed which includes providing a filter body with at least one porous wall, and depositing particles onto the wall, the particles having a mean particle diameter of less than about 30 microns.
    Type: Application
    Filed: November 25, 2009
    Publication date: May 27, 2010
    Inventors: Curtis Robert Fekety, Yunfeng Gu, Keith Leonard House, Thomas Dale Ketcham, Alper Ozturk, Irene Mona Peterson, Jianhua Weng
  • Publication number: 20100056369
    Abstract: Methods of making inorganic membranes, for example, methods of making gamma-alumina inorganic membranes which can be useful for, for example, molecular level gas separations and/or liquid filtration are described.
    Type: Application
    Filed: February 20, 2009
    Publication date: March 4, 2010
    Inventor: Yunfeng Gu