Patents by Inventor Yunseon Heo

Yunseon Heo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10202484
    Abstract: A shape-memory self-healing polymeric network (SMSHP) is useful as a molded part, a coating, or as a matrix for a composite that can be repaired by heating to a controlled temperature. The SMSHP has thermally reversible repeating units where a thermally reversible adduct is situated between two common linking units formed during a polymerization process between thermally reversible monomers and cross-linking monomers. Optionally, other repeating units can be present from other monomers. Shape-memory results when the SMSHP is warmed to a temperature in excess of its glass transition temperature and self-healing then proceeds when a higher temperature is achieved where thermally reversible adducts dissociates to complementary groups that subsequently reform the adduct without distortion of the memorized shape. The thermally reversible adducts can be Diels-Alder (DA) adducts in a polyurethane, poly urea, or amine epoxy SMSHP network.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: February 12, 2019
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Henry A. Sodano, Yunseon Heo
  • Publication number: 20170008998
    Abstract: A shape-memory self-healing polymeric network (SMSHP) is useful as a molded part, a coating, or as a matrix for a composite that can be repaired by heating to a controlled temperature. The SMSHP has thermally reversible repeating units where a thermally reversible adduct is situated between two common linking units formed during a polymerization process between thermally reversible monomers and cross-linking monomers. Optionally, other repeating units can be present from other monomers. Shape-memory results when the SMSHP is warmed to a temperature in excess of its glass transition temperature and self-healing then proceeds when a higher temperature is achieved where thermally reversible adducts dissociates to complementary groups that subsequently reform the adduct without distortion of the memorized shape. The thermally reversible adducts can be Diels-Alder (DA) adducts in a polyurethane, poly urea, or amine epoxy SMSHP network.
    Type: Application
    Filed: May 18, 2016
    Publication date: January 12, 2017
    Inventors: Henry A. Sodano, Yunseon Heo
  • Publication number: 20160036081
    Abstract: A proton exchange membrane (PEM) for use in a direct methanol fuel cell (DMFC) is a laminate of graphene oxide (GO) or sulfonated graphene oxide (SGO) platelets. The mean size of the platelets is at least 10 ?m in diameter and the platelets are combined as a laminate. By use of sufficiently large platelets, the stability of the PEM and the resistance to methanol permeation is improved dramatically with little penalty to the proton conductivity of the GO or SGO PEM. The methanol resistant PEM permits the use of higher methanol concentrations at the anode of a DMFC, for high cell performance.
    Type: Application
    Filed: February 12, 2014
    Publication date: February 4, 2016
    Inventors: Saeed Moghaddam, Henry Angelo Sodano, Abhilash Paneri, Yunseon Heo, Gregory John Ehlert