Patents by Inventor Yupin Kawing Fong

Yupin Kawing Fong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8288225
    Abstract: A nonvolatile memory array includes floating gates that have an inverted-T shape in cross section along a plane that is perpendicular to the direction along which floating cells are connected together to form a string. Adjacent strings are isolated by shallow trench isolation structures.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: October 16, 2012
    Assignee: SanDisk Technologies Inc.
    Inventors: Henry Chien, George Matamis, Tuan Pham, Masaaki Higashitani, Hidetaka Horiuchi, Jeffrey W. Lutze, Nima Mokhlesi, Yupin Kawing Fong
  • Patent number: 8228741
    Abstract: A group of non-volatile memory cells are programmed in a programming pass by a series of incremental programming pulses where each pulse is followed by a program-verify and possibly program-inhibition step. Performance is improved during the programming pass by delayed starting and prematurely terminating the various verify levels that demarcate the multiple memory states. This amounts to skipping the verifying and inhibiting steps of the fastest and slowest programming (fringe) cells of the group. A reference pulse is established when the fastest cells have all been program-verified relative to a first verify level. The starting of what verify level at what pulse will then be delayed relative to the reference pulse. Verifying stops for a given verify level when only a predetermined number of cells remain unverified relative to that given level. Any errors arising from over- or under-programming of the fringe cells are corrected by an error correction code.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: July 24, 2012
    Assignee: SanDisk Technologies Inc.
    Inventors: Yan Li, Yupin Kawing Fong, Siu Lung Chan
  • Publication number: 20110134703
    Abstract: A group of non-volatile memory cells are programmed in a programming pass by a series of incremental programming pulses where each pulse is followed by a program-verify and possibly program-inhibition step. Performance is improved during the programming pass by delayed starting and prematurely terminating the various verify levels that demarcate the multiple memory states. This amounts to skipping the verifying and inhibiting steps of the fastest and slowest programming (fringe) cells of the group. A reference pulse is established when the fastest cells have all been program-verified relative to a first verify level. The starting of what verify level at what pulse will then be delayed relative to the reference pulse. Verifying stops for a given verify level when only a predetermined number of cells remain unverified relative to that given level. Any errors arising from over- or under-programming of the fringe cells are corrected by an error correction code.
    Type: Application
    Filed: February 17, 2011
    Publication date: June 9, 2011
    Inventors: Yan Li, Yupin Kawing Fong, Situ Lung Chan
  • Publication number: 20110111583
    Abstract: A nonvolatile memory array includes floating gates that have an inverted-T shape in cross section along a plane that is perpendicular to the direction along which floating cells are connected together to form a string. Adjacent strings are isolated by shallow trench isolation structures.
    Type: Application
    Filed: January 20, 2011
    Publication date: May 12, 2011
    Inventors: Henry Chien, George Matamis, Tuan Pham, Masaaki Higashitani, Hidetaka Horiuchi, Jeffrey W. Lutze, Nima Mokhlesi, Yupin Kawing Fong
  • Patent number: 7910434
    Abstract: A nonvolatile memory array includes floating gates that have an inverted-T shape in cross section along a plane that is perpendicular to the direction along which floating cells are connected together to form a string. Adjacent strings are isolated by shallow trench isolation structures.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: March 22, 2011
    Assignee: SanDisk Corporation
    Inventors: Henry Chien, George Matamis, Tuan Pham, Masaaki Higashitani, Hidetaka Horiuchi, Jeffrey W. Lutze, Nima Mokhlesi, Yupin Kawing Fong
  • Patent number: 7898868
    Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: March 1, 2011
    Assignee: SanDisk Corporation
    Inventors: Daniel C. Guterman, Yupin Kawing Fong
  • Patent number: 7894273
    Abstract: A group of non-volatile memory cells are programmed in a programming pass by a series of incremental programming pulses where each pulse is followed by a program-verify and possibly program-inhibition step. Performance is improved during the programming pass by delayed starting and prematurely terminating the various verify levels that demarcate the multiple memory states. This amounts to skipping the verifying and inhibiting steps of the fastest and slowest programming (fringe) cells of the group. A reference pulse is established when the fastest cells have all been program-verified relative to a first verify level. The starting of what verify level at what pulse will then be delayed relative to the reference pulse. Verifying stops for a given verify level when only a predetermined number of cells remain unverified relative to that given level. Any errors arising from over- or under-programming of the fringe cells are corrected by an error correction code.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: February 22, 2011
    Assignee: Sandisk Corporation
    Inventors: Yan Li, Yupin Kawing Fong, Siu Lung Chan
  • Patent number: 7885112
    Abstract: Features within an integrated-circuit memory chip enables scrambling or randomization of data stored in an array of nonvolatile memory cells. In one embodiment, randomization within each page helps to control source loading errors during sensing and floating gate to floating gate coupling among neighboring cells. Randomization from page to page helps to reduce program disturbs, user read disturbs, and floating gate to floating gate coupling that result from repeated and long term storage of specific data patterns. In another embodiment, randomization is implemented both within a page and between pages. The scrambling or randomization may be predetermined, or code generated pseudo randomization or user driven randomization in different embodiments. These features are accomplished within the limited resource and budget of the integrated-circuit memory chip.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: February 8, 2011
    Assignee: Sandisk Corporation
    Inventors: Yan Li, Yupin Kawing Fong, Nima Mokhlesi
  • Patent number: 7768836
    Abstract: A group of non-volatile memory cells are programmed in a programming pass by a series of incremental programming pulses where each pulse is followed by a program-verify and possibly program-inhibition step. Performance is improved during the programming pass by delayed starting and prematurely terminating the various verify levels that demarcate the multiple memory states. This amounts to skipping the verifying and inhibiting steps of the fastest and slowest programming (fringe) cells of the group. A reference pulse is established when the fastest cells have all been program-verified relative to a first verify level. The starting of what verify level at what pulse will then be delayed relative to the reference pulse. Verifying stops for a given verify level when only a predetermined number of cells remain unverified relative to that given level. Any errors arising from over- or under-programming of the fringe cells are corrected by an error correction code.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: August 3, 2010
    Assignee: Sandisk Corporation
    Inventors: Yan Li, Yupin Kawing Fong, Siu Lung Chan
  • Patent number: 7734861
    Abstract: Easily implemented randomization within a flash memory EEPROM reduces the NAND string resistance effect, program disturbs, user read disturbs, and floating gate to floating gate coupling that result from repeated and long term storage of specific data patterns. The randomization may be code generated pseudo randomization or user driven randomization in different embodiments. User driven commands, the timing of which cannot be predicted may be used to trigger and achieve a high level of randomization. Randomly altering the encoding scheme of the data prevents repeated and long term storage of specific data patterns. Even if a user wishes to store the same information for long periods, or to repeatedly store it, it will be randomly encoded with different encoding schemes, and the data pattern will therefore be varied.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: June 8, 2010
    Assignee: Sandisk Corporation
    Inventors: Yan Li, Yupin Kawing Fong, Nima Mokhlesi
  • Publication number: 20100091568
    Abstract: A group of non-volatile memory cells are programmed in a programming pass by a series of incremental programming pulses where each pulse is followed by a program-verify and possibly program-inhibition step. Performance is improved during the programming pass by delayed starting and prematurely terminating the various verify levels that demarcate the multiple memory states. This amounts to skipping the verifying and inhibiting steps of the fastest and slowest programming (fringe) cells of the group. A reference pulse is established when the fastest cells have all been program-verified relative to a first verify level. The starting of what verify level at what pulse will then be delayed relative to the reference pulse. Verifying stops for a given verify level when only a predetermined number of cells remain unverified relative to that given level. Any errors arising from over- or under-programming of the fringe cells are corrected by an error correction code.
    Type: Application
    Filed: March 19, 2009
    Publication date: April 15, 2010
    Inventors: Yan Li, Yupin Kawing Fong, Siu Lung Chan
  • Publication number: 20100091573
    Abstract: A group of non-volatile memory cells are programmed in a programming pass by a series of incremental programming pulses where each pulse is followed by a program-verify and possibly program-inhibition step. Performance is improved during the programming pass by delayed starting and prematurely terminating the various verify levels that demarcate the multiple memory states. This amounts to skipping the verifying and inhibiting steps of the fastest and slowest programming (fringe) cells of the group. A reference pulse is established when the fastest cells have all been program-verified relative to a first verify level. The starting of what verify level at what pulse will then be delayed relative to the reference pulse. Verifying stops for a given verify level when only a predetermined number of cells remain unverified relative to that given level. Any errors arising from over- or under-programming of the fringe cells are corrected by an error correction code.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 15, 2010
    Inventors: Yan Li, Yupin Kawing Fong, Siu Lung Chan
  • Publication number: 20100047979
    Abstract: A nonvolatile memory array includes floating gates that have an inverted-T shape in cross section along a plane that is perpendicular to the direction along which floating cells are connected together to form a string. Adjacent strings are isolated by shallow trench isolation structures.
    Type: Application
    Filed: September 25, 2009
    Publication date: February 25, 2010
    Inventors: Henry Chien, George Matamis, Tuan Pham, Masaaki Higashitani, Hidetaka Horiuchi, Jeffrey W. Lutze, Nima Mokhlesi, Yupin Kawing Fong
  • Patent number: 7615445
    Abstract: A nonvolatile memory array includes floating gates that have an inverted-T shape in cross section along a plane that is perpendicular to the direction along which floating cells are connected together to form a string. Adjacent strings are isolated by shallow trench isolation structures. An array having inverted-T shaped floating gates may be formed in a self-aligned manner.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: November 10, 2009
    Assignee: SanDisk Corporation
    Inventors: Henry Chien, George Matamis, Tuan Pham, Masaaki Higashitani, Hidetaka Horiuchi, Jeffrey W. Lutze, Nima Mokhlesi, Yupin Kawing Fong
  • Publication number: 20090268518
    Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.
    Type: Application
    Filed: July 8, 2009
    Publication date: October 29, 2009
    Inventors: Daniel C. Guterman, Yupin Kawing Fong
  • Patent number: 7606966
    Abstract: Easily implemented randomization within a flash memory EEPROM reduces the NAND string resistance effect, program disturbs, user read disturbs, and floating gate to floating gate coupling that result from repeated and long term storage of specific data patterns. The randomization may be code generated pseudo randomization or user driven randomization in different embodiments. User driven commands, the timing of which cannot be predicted may be used to trigger and achieve a high level of randomization. Randomly altering the encoding scheme of the data prevents repeated and long term storage of specific data patterns. Even if a user wishes to store the same information for long periods, or to repeatedly store it, it will be randomly encoded with different encoding schemes, and the data pattern will therefore be varied.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: October 20, 2009
    Assignee: Sandisk Corporation
    Inventors: Yan Li, Yupin Kawing Fong, Nima Mokhlesi
  • Patent number: 7584391
    Abstract: A “smart verify” technique, whereby multi-state memories are programmed using a verify-results-based dynamic adjustment of the multi-states verify range for sequential-state-based verify implementations, is presented. This technique can increase multi-state write speed while maintaining reliable operation within sequentially verified, multi-state memory implementations by providing “intelligent” means to minimize the number of sequential verify operations for each program/verify/lockout step of the write sequence. At the beginning of a program/verify cycle sequence only the lowest state or states are checked during the verify phase. As lower states are reached, additional higher states are added to the verify sequence and lower states can be removed.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: September 1, 2009
    Assignee: SanDisk Corporation
    Inventors: Geoffrey S. Gongwer, Daniel C. Guterman, Yupin Kawing Fong
  • Patent number: 7573740
    Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: August 11, 2009
    Assignee: SanDisk Corporation
    Inventors: Daniel C. Guterman, Yupin Kawing Fong
  • Publication number: 20090067244
    Abstract: Features within an integrated-circuit memory chip enables scrambling or randomization of data stored in an array of nonvolatile memory cells. In one embodiment, randomization within each page helps to control source loading errors during sensing and floating gate to floating gate coupling among neighboring cells. Randomization from page to page helps to reduce program disturbs, user read disturbs, and floating gate to floating gate coupling that result from repeated and long term storage of specific data patterns. In another embodiment, randomization is implemented both within a page and between pages. The scrambling or randomization may be predetermined, or code generated pseudo randomization or user driven randomization in different embodiments. These features are accomplished within the limited resource and budget of the integrated-circuit memory chip.
    Type: Application
    Filed: September 7, 2007
    Publication date: March 12, 2009
    Inventors: Yan Li, Yupin Kawing Fong, Nima Mokhlesi
  • Patent number: 7457162
    Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: November 25, 2008
    Assignee: SanDisk Corporation
    Inventors: Daniel C. Guterman, Yupin Kawing Fong