Patents by Inventor Yushan Yan

Yushan Yan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110097570
    Abstract: The present invention provides a wear and/or corrosion-resistant zeolite coating for protection of the surface of a substrate of a metal.
    Type: Application
    Filed: October 28, 2010
    Publication date: April 28, 2011
    Inventors: Yushan Yan, Junlan Wang, Gabriel Chow
  • Publication number: 20110027599
    Abstract: Disclosed are nanocomposite membranes and methods for making and using same. In one aspect, the nanocomposite membrane comprises a film comprising a polymer matrix and nanoparticles disposed within the polymer matrix, wherein the film is substantially permeable to water and substantially impermeable to impurities. In a further aspect, the membrane can further comprise a hydrophilic layer. In a further aspect, the nanocomposite membrane comprises a film having a face, the film comprising a polymer matrix, a hydrophilic layer proximate to the face, and nanoparticles disposed within the hydrophilic layer, wherein the film is substantially permeable to water and substantially impermeable to impurities. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: February 27, 2006
    Publication date: February 3, 2011
    Inventors: Eric M. V. Hoek, Yushan Yan, Byeong-Heon Jeong
  • Patent number: 7829620
    Abstract: A suite of polymer/zeolite nanocomposite membranes. The polymer backbone is preferably a film forming fluorinated sulfonic acid containing copolymer, such as a Teflon type polymer, a perfluorinated polymer, or a perfluorinated polymer with sulfonic groups. The zeolites formed in accordance with the present invention and which are used in the membranes are plain, phenethyl functionalized and acid functionalized zeolite FAU(Y) and BEA nanocrystals. The zeolite nanocrystals are incorporated into polymer matrices for membrane separation applications like gas separations, and in polymer-exchange-membrane fuel cells. For the purpose of developing zeolite-polymer nanocomposite membranes, the zeolite nanocrystals are size-adjustable to match the polymer-network dimensions.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: November 9, 2010
    Assignee: The Regents of the University of California
    Inventors: Yushan Yan, Brett Holmberg, Xin Wang
  • Publication number: 20100249445
    Abstract: A method of silylating porous silica films comprises: preparing a porous silica film; and grafting the film with a hydrophobic functional group while annealing the film. The porous silica film is a sol-gel silica film, a mesoporous silica film, in situ crystallized polycrystalline pure-silica zeolite (PSZ), spin-on PSZ, and spin-on PSZ MEL (or PSZ MEL-structural type) films. The hydrophobic functional group is trimethylchlorosilane (TMCS); dimethyldichlorosilane; methyltrichlorosilane; alkylchlorosilanes, such as (CH3(CH2)n)xSiCl4-x, where x is 1, 2, or 3; alkoxychlorosilanes; hexamethyldisilazane (HMDS), and/or aminosilanes. In addition, the steps of grafting and annealing the film are performed simultaneously, which imparts hydrofluoric acid resistance and reduces moisture adsorption to the film.
    Type: Application
    Filed: March 24, 2010
    Publication date: September 30, 2010
    Applicant: The Regents of the University of California
    Inventors: Yushan Yan, Christopher Lew
  • Publication number: 20100159305
    Abstract: Novel proton exchange membrane fuel cells and direct methanol fuel cells with nanostructured components are configured with higher precious metal utilization rate at the electrodes, higher power density, and lower cost. To form a catalyst, platinum or platinum-ruthenium nanoparticles are deposited onto carbon-based materials, for example, single-walled, dual-walled, multi-walled and cup-stacked carbon nanotubes. The deposition process includes an ethylene glycol reduction method. Aligned arrays of these carbon nanomaterials are prepared by filtering the nanomaterials with ethanol. A membrane electrode assembly is formed by sandwiching the catalyst between a proton exchange membrane and a diffusion layer that form a first electrode. The second electrode may be formed using a conventional catalyst. The several layers of the MEA are hot pressed to form an integrated unit.
    Type: Application
    Filed: March 15, 2006
    Publication date: June 24, 2010
    Inventors: Yushan Yan, Xin Wang, Wenzhen Li, Mahesh Waje, Zhongwei Chen, William Goddard, Wei-Qiao Deng
  • Publication number: 20100119736
    Abstract: A method for producing zeolite films or membranes at essentially ambient pressure, which includes preparing a synthesis mixture comprising an ionic liquid solvent and an aluminum and/or silicon and/or phosphate source and converting the synthesis mixture to form a continuous zeolite layer. In addition, a method of synthesizing zeolite nanocrystals, which includes preparing a synthesis mixture, the synthesis mixture having a silica or a silica and alumina source, and a template; and synthesizing the synthesis mixture to form zeolite nanocrystals.
    Type: Application
    Filed: October 7, 2009
    Publication date: May 13, 2010
    Applicant: The Regents of the University of California
    Inventors: Yushan Yan, Rui Cai, Minwei Sun
  • Publication number: 20100084792
    Abstract: A suite of polymer/zeolite nanocomposite membranes. The polymer backbone is preferably a film forming fluorinated sulfonic acid containing copolymer, such as a Teflon type polymer, a perfluorinated polymer, or a perfluorinated polymer with sulfonic groups. The zeolites formed in accordance with the present invention and which are used in the membranes are plain, phenethyl functionalized and acid functionalized zeolite FAU(Y) and BEA nanocrystals. The zeolite nanocrystals are incorporated into polymer matrices for membrane separation applications like gas separations, and in polymer-exchange-membrane fuel cells. For the purpose of developing zeolite-polymer nanocomposite membranes, the zeolite nanocrystals are size-adjustable to match the polymer-network dimensions.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 8, 2010
    Applicant: The Regents of the University of California
    Inventors: Yushan Yan, Brett Holmberg, Xin Wang
  • Patent number: 7691514
    Abstract: A suite of polymer/zeolite nanocomposite membranes. The polymer backbone is preferably a film forming fluorinated sulfonic acid containing copolymer, such as a Teflon type polymer, a perfluorinated polymer, or a perfluorinated polymer with sulfonic groups. The zeolites formed in accordance with the present invention and which are used in the membranes are plain, phenethyl functionalized and acid functionalized zeolite FAU(Y) and BEA nonocrystals. The zeolite nanocrystals are incorporated into polymer matrices for membrane separation applications like gas separations, and in polymer-exchange-membrane fuel cells. For the purpose of developing zeolite-polymer nanocomposite membranes, the zeolite nanocrystals are size-adjustable to match the polymer-network dimensions.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: April 6, 2010
    Assignee: The Regents of the University of California
    Inventors: Yushan Yan, Brett Holmberg, Xin Wang
  • Patent number: 7179547
    Abstract: A composition of matter including a substrate of a metal that is susceptible to corrosion in a high pH alkaline solution, a corrosion-resistant base layer disposed on the surface of the substrate, the base layer having a pure or high silica zeolite having a silicon:aluminum atomic ratio of at least about 100, a middle mixed zeolite layer disposed on the surface of the base layer, and a top hydrophilic layer disposed on the surface of the middle layer, the top layer having a high aluminum zeolite having a silicon:aluminum atomic ratio of less than 5. The middle mixed zeolite layer includes a zeolite having a silicon:aluminum atomic ratio range that is between the silicon:aluminum ratio of the pure or high silica zeolite of the base layer and of the high aluminum zeolite of the top layer.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: February 20, 2007
    Assignee: The Regents of the University of California
    Inventors: Yushan Yan, Derek Beving
  • Publication number: 20060093806
    Abstract: A composition of matter including a substrate of a metal that is susceptible to corrosion in a high pH alkaline solution, a corrosion-resistant base layer disposed on the surface of the substrate, the base layer having a pure or high silica zeolite having a silicon: aluminum atomic ratio of at least about 100, a middle mixed zeolite layer disposed on the surface of the base layer, and a top hydrophilic layer disposed on the surface of the middle layer, the top layer having a high aluminum zeolite having a silicon: aluminum atomic ratio of less than 5. The middle mixed zeolite layer includes a zeolite having a silicon: aluminum atomic ratio range that is between the silicon: aluminum ratio of the pure or high silica zeolite of the base layer and of the high aluminum zeolite of the top layer.
    Type: Application
    Filed: October 29, 2004
    Publication date: May 4, 2006
    Applicant: The Regents of the University of California
    Inventors: Yushan Yan, Derek Beving
  • Publication number: 20060088741
    Abstract: Methanol-tolerant cathodic catalysts were prepared by depositing platinum nanoparticles and iron macrocycles on a carbon substrate. The order of depositing the iron and platinum on the carbon substrate were varied to form a (Fe—Pt)/C catalyst and a (Pt—Fe)/C catalyst. Different sintering temperatures were investigated to determine the heating effect on methanol tolerance. Oxygen reduction with and without the presence of methanol on these new catalysts was evaluated by using a rotating disk electrode system.
    Type: Application
    Filed: October 27, 2005
    Publication date: April 27, 2006
    Inventors: Yushan Yan, Xin Wang
  • Publication number: 20060034757
    Abstract: A suite of polymer/zeolite nanocomposite membranes. The polymer backbone is preferably a film forming fluorinated sulfonic acid containing copolymer, such as a Teflon type polymer, a perfluorinated polymer, or a perfluorinated polymer with sulfonic groups. The zeolites formed in accordance with the present invention and which are used in the membranes are plain, phenethyl functionalized and acid functionalized zeolite FAU(Y) and BEA nonocrystals. The zeolite nanocrystals are incorporated into polymer matrices for membrane separation applications like gas separations, and in polymer-exchange-membrane fuel cells. For the purpose of developing zeolite-polymer nanocomposite membranes, the zeolite nanocrystals are size-adjustable to match the polymer-network dimensions.
    Type: Application
    Filed: November 4, 2004
    Publication date: February 16, 2006
    Applicant: The Regents of the University of California
    Inventors: Yushan Yan, Brett Holmberg, Xin Wang
  • Patent number: 6849568
    Abstract: A hydrophilic coating can be optionally corrosion resistant and/or microbial resistant for a substrate such as a heat exchanger. The coating is provided by a zeolite layer that can be formed from a synthesis solution comprising a structure directing agent, a base, a silicon source, an aluminum source, and a solvent. In one preferred embodiment, the synthesis solution comprises tetrapropylammonium hydroxide, sodium hydroxide, aluminum oxide, tetraethylorthosilicate, and water. The layer is characterized by a zeolite MFI structure and by a composition having the formula of Mn/m[AlnSi(96-n)O192], or [AlnSi(96-n)O192].4[(CH3CH2CH2)4N—OH] wherein M is a metal ion of valence m+ (e.g., Na+) and 27>n>=0. After formation of the coating, the organic structure directing agent can be left intact inside the zeolite coating to make the coating corrosion resistant.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: February 1, 2005
    Assignee: Honeywell International Inc.
    Inventor: Yushan Yan
  • Publication number: 20040167014
    Abstract: A novel proton exchange membrane fuel cell with nanostructured components with higher precious metal utilization rate at the electrodes, higher power density, and lower cost. Aligned arrays of carbon nanotubes, either single wall or multiwall, are prepared by catalyzed chemical vapor deposition (CVD), or plasma assisted CVD and used as support for catalyst. Solubilized perfluorosulfonate ionomer membrane is incorporated into the spare space between nanotubes to form a 4-phase boundary of gas, metal, proton conductor, and electron conductor. By assembling the as-prepared electrodes with perfluorosulfonate ionomer membrane, backing layers and electron collectors, proton exchange membrane fuel cells are developed.
    Type: Application
    Filed: November 13, 2003
    Publication date: August 26, 2004
    Applicant: The Regents of the Univ. of California, Office of Technology Transfer, University of California
    Inventors: Yushan Yan, Cheng Wang
  • Patent number: 6630696
    Abstract: Thin films for use as dielectric in semiconductor and other devices are prepared from silica zeolites, preferably pure silica zeolites such as pure-silica MFI. The films have low k values, generally below about 2.7, ranging downwards to k values below 2.2. The films have relatively uniform pore distribution, good mechanical strength and adhesion, are relatively little affected by moisture, and are thermally stable. The films may be produced from a starting zeolite synthesis or precursor composition containing a silica source and an organic zeolite structure-directing agent such as a quaternary ammonium hydroxide. In one process the films are produced from the synthesis composition by in-situ crystallization on a substrate. In another process, the films are produced by spin-coating, either through production of a suspension of zeolite crystals followed by redispersion or by using an excess of the alkanol produced in preparing the synthesis composition.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: October 7, 2003
    Assignee: The Regents of the University of California
    Inventors: Yushan Yan, Zhengbao Wang, Huanting Wang
  • Patent number: 6573131
    Abstract: Thin films for use as dielectric in semiconductor and other devices are prepared from silica zeolites, preferably pure silica zeolites such as pure-silica MFI. The films have low k values, generally below about 2.7, ranging downwards to k values below 2.2. The films have relatively uniform pore distribution, good mechanical strength and adhesion, are relatively little affected by moisture, and are thermally stable. The films may be produced from a starting zeolite synthesis or precursor composition containing a silica source and an organic zeolite structure-directing agent such as a quaternary ammonium hydroxide. In one process the films are produced from the synthesis composition by in-situ crystallization on a substrate. In another process, the films are produced by spin-coating, either through production of a suspension of zeolite crystals followed by redispersion or by using an excess of the alkanol produced in preparing the synthesis composition.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: June 3, 2003
    Assignee: The Regents of The University of California
    Inventors: Yushan Yan, Huanting Wang, Zhengbao Wang
  • Publication number: 20030091872
    Abstract: A hydrophilic coating can be optionally corrosion resistant and/or microbial resistant for a substrate such as a heat exchanger. The coating is provided by a zeolite layer that can be formed from a synthesis solution comprising a structure directing agent, a base, a silicon source, an aluminum source, and a solvent. In one preferred embodiment, the synthesis solution comprises tetrapropylammonium hydroxide, sodium hydroxide, aluminum oxide, tetraethylorthosilicate, and water. The layer is characterized by a zeolite MFI structure and by a composition having the formula of Mn/m[AlnSi(96-n)O192], or [AlnSi(96-n)O192].4[(CH3CH2CH2)4N—OH] wherein M is a metal ion of valence m+ (e.g., Na+) and 27>n>=0. After formation of the coating, the organic structure directing agent can be left intact inside the zeolite coating to make the coating corrosion resistant.
    Type: Application
    Filed: December 12, 2002
    Publication date: May 15, 2003
    Inventor: Yushan Yan
  • Patent number: 6521198
    Abstract: Metal surfaces are protected against corrosion by a coating of molecular sieve, notably a zeolite or a phosphate-containing molecular sieve, rendered substantially non-porous by the retention (or addition) of a pore-filling member inside the voids of the molecular sieve crystal structure. Pore-filling agents convenient for use include species typically used as structure-directing agents in the synthesis of zeolites and other molecular sieves. A further aspect of the invention is a method of protecting a metal surface from corrosion by crystallizing a molecular sieve in situ on the metal surface.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: February 18, 2003
    Assignee: The Regents of the University of California
    Inventors: Yushan Yan, Xiaoliang Cheng, Zhengbao Wang
  • Patent number: 6500490
    Abstract: A hydrophilic coating can be optionally corrosion resistant and/or microbial resistant for a substrate such as a heat exchanger. The coating is provided by a zeolite layer that can be formed from a synthesis solution comprising a structure directing agent, a base, a silicon source, an aluminum source, and a solvent. In one preferred embodiment, the synthesis solution comprises tetrapropylammonium hydroxide, sodium hydroxide, aluminum oxide, tetraethylorthosilicate, and water. The layer is characterized by a zeolite MFI structure and by a composition having the formula of Mn/m[AlnSi(96−n)O192], or [AlnSi(96−n)O192]·4[(CH3CH2CH2)4N—OH] wherein M is a metal ion of valence m+ (e.g., Na+) and 27>n>=0. After formation of the coating, the organic structure directing agent can be left intact inside the zeolite coating to make the coating corrosion resistant.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: December 31, 2002
    Assignee: Honeywell International Inc.
    Inventor: Yushan Yan
  • Publication number: 20020134995
    Abstract: Thin films for use as dielectric in semiconductor and other devices are prepared from silica zeolites, preferably pure silica zeolites such as pure-silica MFI. The films have low k values, generally below about 2.7, ranging downwards to k values below 2.2. The films have relatively uniform pore distribution, good mechanical strength and adhesion, are relatively little affected by moisture, and are thermally stable. The films may be produced from a starting zeolite synthesis or precursor composition containing a silica source and an organic zeolite structure-directing agent such as a quaternary ammonium hydroxide. In one process the films are produced from the synthesis composition by in-situ crystallization on a substrate. In another process, the films are produced by spin-coating, either through production of a suspension of zeolite crystals followed by redispersion or by using an excess of the alkanol produced in preparing the synthesis composition.
    Type: Application
    Filed: March 28, 2002
    Publication date: September 26, 2002
    Applicant: The Regents of the University of California
    Inventors: Yushan Yan, Zhengbao Wang, Huanting Wang