Patents by Inventor Yushi Hu

Yushi Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10658382
    Abstract: An elevationally-extending string of memory cells comprises an upper stack elevationally over a lower stack. The upper and lower stacks individually comprise vertically-alternating tiers comprising control gate material of individual charge storage field effect transistors vertically alternating with insulating material. An upper stack channel pillar extends through multiple of the vertically-alternating tiers in the upper stack and a lower stack channel pillar extends through multiple of the vertically-alternating tiers in the lower stack. Tunnel insulator, charge storage material, and control gate blocking insulator is laterally between the respective upper and lower stack channel pillars and the control gate material. A conductive interconnect comprising conductively-doped semiconductor material is elevationally between and electrically couples the upper and lower stack channel pillars together. The conductively-doped semiconductor material comprises a first conductivity-producing dopant.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: May 19, 2020
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, David Daycock, Yushi Hu, Christopher Larsen, Dimitrios Pavlopoulos
  • Publication number: 20200152658
    Abstract: Some embodiments include a memory array which has a stack of alternating first and second levels. Channel material pillars extend through the stack, and vertically-stacked memory cell strings are along the channel material pillars. A common source is under the stack and electrically coupled to the channel material pillars. The common source has conductive protective material over and directly against metal silicide, with the conductive protective material being a composition other than metal silicide. Some embodiments include methods of fabricating integrated structures.
    Type: Application
    Filed: January 9, 2020
    Publication date: May 14, 2020
    Inventors: John M. Meldrim, Yushi Hu, Rita J. Klein, John D. Hopkins, Hongbin Zhu, Gordon A. Haller, Luan C. Tran
  • Patent number: 10644015
    Abstract: Various embodiments disclose a 3D memory device, including a substrate; a plurality of conductor layers disposed on the substrate; a plurality of NAND strings disposed on the substrate; and a plurality of slit structures disposed on the substrate. The plurality of NAND strings can be arranged perpendicular to the substrate and in a hexagonal lattice orientation including a plurality of hexagons, and each hexagon including three pairs of sides with a first pair perpendicular to a first direction and parallel to a second direction. The second direction is perpendicular to the first direction. The plurality of slit structures can extend in the first direction.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: May 5, 2020
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Xiaowang Dai, Zhenyu Lu, Jun Chen, Qian Tao, Yushi Hu, Jifeng Zhu, Jin Wen Dong, Ji Xia, Zhong Zhang, Yan Ni Li
  • Publication number: 20200135748
    Abstract: Some embodiments include apparatuses and methods having a source material, a dielectric material over the source material, a select gate material over the dielectric material, a memory cell stack over the select gate material, a conductive plug located in an opening of the dielectric material and contacting a portion of the source material, and a channel material extending through the memory cell stack and the select gate material and contacting the conductive plug.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 30, 2020
    Inventors: Fatma Arzum Simsek-Ege, Krishna K. Parat, Luan C. Tran, Meng-Wei Kuo, Yushi Hu
  • Publication number: 20200119031
    Abstract: Aspects of the disclosure provide a semiconductor device. The semiconductor device includes gate layers and insulating layers that are stacked alternatingly along a first direction perpendicular to a substrate of the semiconductor device in a first region upon the substrate. The gate layers and the insulating layers are stacked of a stair-step form in a second region. The semiconductor device includes a channel structure that is disposed in the first region. The channel structure and the gate layers form a stack of transistors in a series configuration with the gate layers being gates for the transistors. The semiconductor device includes a contact structure disposed in the second region, and a first dummy channel structure disposed in the second region and around the contact structure. The first dummy channel structure is patterned with a first shape that is different from a second shape of the channel structure.
    Type: Application
    Filed: March 28, 2019
    Publication date: April 16, 2020
    Applicant: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Miao Shen, Li Hong Xiao, Yushi Hu, Qian Tao, Mei Lan Guo, Yong Zhang, Jian Hua Sun
  • Publication number: 20200105778
    Abstract: A semiconductor device includes a string of transistors stacked along a vertical direction above a substrate of the semiconductor device. The string can include a first substring, a channel connector disposed above the first substring, and a second substring. The first substring includes a first channel structure having a first channel layer and a first gate dielectric structure that extend along the vertical direction. The second substring is stacked above the channel connector, and has a second channel structure that includes a second channel layer and a second gate dielectric structure that extend along the vertical direction. The channel connector, electrically coupling the first and the second channel layer, is disposed below the second gate dielectric structure to enable formation of a conductive path in a bottom region of the second channel layer. The bottom region is associated with a lowermost transistor in the second substring.
    Type: Application
    Filed: March 28, 2019
    Publication date: April 2, 2020
    Applicant: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Ruo Fang ZHANG, Enbo WANG, Haohao YANG, Qianbing XU, Yushi HU, Qian TAO
  • Publication number: 20200091166
    Abstract: In a memory device, a lower memory cell string is formed over a substrate to include a first channel structure, a plurality of first word line layers and first insulating layers. The first channel structure protrudes from the substrate and passes through the first word line layers and first insulating layers. An inter deck contact is formed over the lower memory cell string and connected with the first channel structure. An upper memory cell string is formed over the inter deck contact. The upper memory cell string includes a second channel structure, a plurality of second word lines and second insulating layers. The second channel structure passes through the second word lines and second insulating layers, and extends to the inter deck contact, and further extends laterally into the second insulating layers. A channel dielectric region of the second channel structure is above the inter deck contact.
    Type: Application
    Filed: March 28, 2019
    Publication date: March 19, 2020
    Applicant: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Ruo Fang ZHANG, Enbo WANG, Haohao YANG, Qianbing XU, Yushi HU, Fushan ZHANG
  • Publication number: 20200066739
    Abstract: Embodiments of three-dimensional (3D) memory devices having through array contacts (TACs) and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A dielectric stack including a plurality of dielectric/sacrificial layer pairs is formed on a substrate. A channel structure extending vertically through the dielectric stack is formed. A first opening extending vertically through the dielectric stack is formed. A spacer is formed on a sidewall of the first opening. A TAC extending vertically through the dielectric stack is formed by depositing a conductor layer in contact with the spacer in the first opening. A slit extending vertically through the dielectric stack is formed after forming the TAC. A memory stack including a plurality of conductor/dielectric layer pairs is formed on the substrate by replacing, through the slit, the sacrificial layers in the dielectric/sacrificial layer pairs with a plurality of conductor layers.
    Type: Application
    Filed: October 1, 2018
    Publication date: February 27, 2020
    Inventors: Mei Lan Guo, Yushi Hu, Ji Xia, Hongbin Zhu
  • Publication number: 20200058486
    Abstract: Embodiments of semiconductor structures for wafer flatness control and methods for using and forming the same are disclosed. In an example, a model indicative of a flatness difference of a wafer between a first direction and a second direction is obtained. The flatness difference is associated with one of a plurality of fabrication stages of a plurality of semiconductor devices on a front side of the wafer. A compensation pattern is determined for reducing the flatness difference based on the model. At the one of the plurality of the fabrication stages, a compensation structure is formed on a backside opposite to the front side of the wafer based on the compensation pattern to reduce the flatness difference.
    Type: Application
    Filed: September 24, 2018
    Publication date: February 20, 2020
    Inventors: Xiaowang Dai, Zhenyu Lu, Qian Tao, Yushi Hu, Ji Xia, Zhaosong Li, Jialan He
  • Patent number: 10566336
    Abstract: Embodiments of three-dimensional (3D) memory devices having through array contacts (TACs) and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A dielectric stack including a plurality of dielectric/sacrificial layer pairs is formed on a substrate. A channel structure extending vertically through the dielectric stack is formed. A first opening extending vertically through the dielectric stack is formed. A spacer is formed on a sidewall of the first opening. A TAC extending vertically through the dielectric stack is formed by depositing a conductor layer in contact with the spacer in the first opening. A slit extending vertically through the dielectric stack is formed after forming the TAC. A memory stack including a plurality of conductor/dielectric layer pairs is formed on the substrate by replacing, through the slit, the sacrificial layers in the dielectric/sacrificial layer pairs with a plurality of conductor layers.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: February 18, 2020
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Mei Lan Guo, Yushi Hu, Ji Xia, Hongbin Zhu
  • Patent number: 10553611
    Abstract: Some embodiments include a memory array which has a stack of alternating first and second levels. Channel material pillars extend through the stack, and vertically-stacked memory cell strings are along the channel material pillars. A common source is under the stack and electrically coupled to the channel material pillars. The common source has conductive protective material over and directly against metal silicide, with the conductive protective material being a composition other than metal silicide. Some embodiments include methods of fabricating integrated structures.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: February 4, 2020
    Assignee: Micron Technology, Inc.
    Inventors: John M. Meldrim, Yushi Hu, Rita J. Klein, John D. Hopkins, Hongbin Zhu, Gordon A. Haller, Luan C. Tran
  • Publication number: 20200035699
    Abstract: Methods and structures of a three-dimensional memory device are disclosed. In an example, the memory device includes a substrate and a multiple-stack staircase structure. The multiple-stack staircase structure can include a plurality of staircase structures stacked over the substrate. Each one of the plurality of staircase structures can include a plurality of conductor layers each between two insulating layers. The memory device can also include a filling structure over the multiple-stack staircase structure, a semiconductor channel extending through the multiple-stack staircase structure, and a supporting pillar extending through the multiple-stack staircase structure and the filling structure. The semiconductor channel can include unaligned sidewall surfaces, and the supporting pillar can include aligned sidewall surfaces.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 30, 2020
    Applicant: Yangtze Memory Technologies Co., Ltd.
    Inventors: Jun LIU, Zongliang Huo, Li Hong Xiao, Zhenyu Lu, Qian Tao, Yushi Hu, Sizhe Li, Zhao Hui Tang, Yu Ting Zhou, Zhaosong Li
  • Publication number: 20200027509
    Abstract: Embodiments of three-dimensional (3D) memory devices are disclosed. In an example, a 3D memory device includes a substrate, a peripheral device disposed on the substrate, a memory stack disposed above the peripheral device and including a plurality of conductor/dielectric layer pairs, and a plurality of memory strings. Each of the memory strings extends vertically through the memory stack and includes a drain select gate and a source select gate above the drain select gate. Edges of the conductor/dielectric layer pairs in a staircase structure of the memory stack along a vertical direction away from the substrate are staggered laterally toward the memory strings.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 23, 2020
    Inventors: Jun Chen, Jifeng Zhu, Zhenyu Lu, Yushi Hu, Jin Wen Dong, Lan Yao
  • Patent number: 10515975
    Abstract: A method for forming a channel hole structure of a 3D memory device is disclosed. The method includes: forming a first alternating dielectric stack and a first insulating layer on a substrate; forming a first channel structure in a first channel hole penetrating the first insulating layer and the first alternating dielectric stack; forming a sacrificial inter-deck plug in the first insulating layer; forming a second alternating dielectric stack on the sacrificial inter-deck plug; forming a second channel hole penetrating the second alternating dielectric stack and expose a portion of the sacrificial inter-deck plug; removing the sacrificial inter-deck plug to form a cavity; and forming an inter-deck channel plug in the cavity and a second channel structure in the second channel hole, the inter-deck channel plug contacts the first channel structure and the second channel structure.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: December 24, 2019
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Qian Tao, Yushi Hu, Zhenyu Lu, Li Hong Xiao, Jun Chen, Xiaowang Dai, Jin Lyu, Jifeng Zhu, Jin Wen Dong, Lan Yao
  • Patent number: 10515972
    Abstract: Some embodiments include apparatuses and methods having a source material, a dielectric material over the source material, a select gate material over the dielectric material, a memory cell stack over the select gate material, a conductive plug located in an opening of the dielectric material and contacting a portion of the source material, and a channel material extending through the memory cell stack and the select gate material and contacting the conductive plug.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: December 24, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, Krishna K. Parat, Luan C. Tran, Meng-Wei Kuo, Yushi Hu
  • Publication number: 20190378849
    Abstract: A method for forming a channel hole structure of a 3D memory device is disclosed. The method includes: forming a first alternating dielectric stack and a first insulating layer on a substrate; forming a first channel structure in a first channel hole penetrating the first insulating layer and the first alternating dielectric stack; forming a sacrificial inter-deck plug in the first insulating layer; forming a second alternating dielectric stack on the sacrificial inter-deck plug; forming a second channel hole penetrating the second alternating dielectric stack and expose a portion of the sacrificial inter-deck plug; removing the sacrificial inter-deck plug to form a cavity; and forming an inter-deck channel plug in the cavity and a second channel structure in the second channel hole, the inter-deck channel plug contacts the first channel structure and the second channel structure.
    Type: Application
    Filed: July 26, 2018
    Publication date: December 12, 2019
    Applicant: Yangtze Memory Technologies Co., Ltd.
    Inventors: Qian Tao, Yushi HU, Zhenyu Lu, Li Hong XIAO, Jun CHEN, Xiaowang DAI, Jin LYU, Jifeng ZHU, Jin Wen DONG, Lan YAO
  • Publication number: 20190378858
    Abstract: Some embodiments include a NAND memory array which has a vertical stack of alternating insulative levels and wordline levels. The wordline levels have terminal ends corresponding to control gate regions. Charge-trapping material is along the control gate regions of the wordline levels, and is spaced form the control gate regions by charge-blocking material. The charge-trapping material along vertically adjacent wordline levels is spaced by intervening regions through which charge migration is impeded. Channel material extends vertically along the stack and is spaced from the charge-trapping material by charge-tunneling material. Some embodiments include methods of forming NAND memory arrays.
    Type: Application
    Filed: August 21, 2019
    Publication date: December 12, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Akira Goda, Yushi Hu
  • Publication number: 20190360120
    Abstract: Various embodiments include methods and apparatuses comprising methods for formation of and apparatuses including a source material for electronic devices. One such apparatus includes a vertical string of memory cells comprising a plurality of alternating levels of conductor and dielectric material, a semiconductor material extending through the plurality of alternating levels of conductor material and dielectric material, and a source material coupled to the semiconductor material. The source material includes a titanium nitride layer and a source polysilicon layer in direct contact with the titanium nitride layer. Other methods and apparatuses are disclosed.
    Type: Application
    Filed: June 10, 2019
    Publication date: November 28, 2019
    Inventors: John Mark Meldrim, Yushi Hu, Yongjun Jeff Hu, Everett Allen Mcteer
  • Patent number: 10483280
    Abstract: Embodiments of methods for forming staircase structures for three-dimensional (3D) memory devices double-sided routing are disclosed. In an example, a first dielectric layer is formed on a substrate, and a first photoresist layer is formed on the first dielectric layer. A recess is patterned through the first dielectric layer to the substrate by cycles of trim-etch the first dielectric layer. A plurality of dielectric/sacrificial layer pairs filling in the recess are formed. A second photoresist layer is formed on a top surface of the dielectric/sacrificial layer pairs. The dielectric/sacrificial layer pairs are patterned by cycles of trim-etch the dielectric/sacrificial layer pairs. A second dielectric layer covering the patterned dielectric/sacrificial layer pairs is formed. A memory stack on the substrate including a plurality of conductor/dielectric layer pairs is formed by replacing, with a plurality of conductor layers, the sacrificial layers in the patterned dielectric/sacrificial layer pairs.
    Type: Grant
    Filed: September 22, 2018
    Date of Patent: November 19, 2019
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Li Hong Xiao, Yushi Hu
  • Publication number: 20190341399
    Abstract: Embodiments of interconnect structures of a three-dimensional (3D) memory device and method for forming the interconnect structures are disclosed. In an example, a 3D NAND memory device includes a semiconductor substrate, an alternating layer stack disposed on the semiconductor substrate, and a dielectric structure, which extends vertically through the alternating layer stack, on an isolation region of the substrate. Further, the alternating layer stack abuts a sidewall surface of the dielectric structure and the dielectric structure is formed of a dielectric material. The 3D memory device additionally includes one or more through array contacts that extend vertically through the dielectric structure and the isolation region, and one or more channel structures that extend vertically through the alternating layer stack.
    Type: Application
    Filed: July 27, 2018
    Publication date: November 7, 2019
    Applicant: Yangtze Memory Technologies Co., Ltd.
    Inventors: Qian TAO, Yushi HU, Zhenyu LU, Li Hong XIAO, Xiaowang DAI, Yu Ting ZHOU, Zhao Hui TANG, Mei Lan GUO, ZhiWu TANG, Qinxiang WEI, Qianbing XU, Sha Sha LIU, Jian Hua SUN, Enbo WANG