Patents by Inventor Yusuke Yoshizumi

Yusuke Yoshizumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11421344
    Abstract: A gallium nitride crystal substrate has a diameter of 50-155 mm and a thickness of 300-800 ?m and includes any of a flat portion and a notch portion in a part of an outer edge. The gallium nitride crystal substrate contains any of oxygen atoms, silicon atoms, and carriers at a concentration of 2×1017 to 4×1018 cm?3, and has an average dislocation density of 1000 to 5×107 cm?2 in any of a first flat region extending over a width from the flat portion to a position at a distance of 2 mm in a direction perpendicular to a straight line indicating the flat portion in a main surface and a first notch region extending over a width from the notch portion to a position at a distance of 2 mm in a direction perpendicular to a curve indicating the notch portion in the main surface.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: August 23, 2022
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yusuke Yoshizumi, Hideki Osada, Shugo Minobe, Yoshiaki Hagi
  • Patent number: 11094537
    Abstract: Provided are a group III nitride composite substrate having a low sheet resistance and produced with a high yield, and a method for manufacturing the same, as well as a method for manufacturing a group III nitride semiconductor device using the group III nitride composite substrate. A group III nitride composite substrate includes a group III nitride film and a support substrate formed from a material different in chemical composition from the group III nitride film. The group III nitride film is joined to the support substrate in one of a direct manner and an indirect manner. The group III nitride film has a thickness of 10 ?m or more. A sheet resistance of a group III-nitride-film-side main surface is 200 ?/sq or less.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: August 17, 2021
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Akihiro Hachigo, Yuki Hiromura, Naoki Matsumoto, Seiji Nakahata, Fumitake Nakanishi, Takuya Yanagisawa, Koji Uematsu, Yuki Seki, Yoshiyuki Yamamoto, Yusuke Yoshizumi, Hidenori Mikami
  • Publication number: 20200255979
    Abstract: A gallium nitride crystal substrate has a diameter of 50-155 mm and a thickness of 300-800 ?m and includes any of a flat portion and a notch portion in a part of an outer edge. The gallium nitride crystal substrate contains any of oxygen atoms, silicon atoms, and carriers at a concentration of 2×1017 to 4×1018 cm?3, and has an average dislocation density of 1000 to 5×107 cm?2 in any of a first flat region extending over a width from the flat portion to a position at a distance of 2 mm in a direction perpendicular to a straight line indicating the flat portion in a main surface and a first notch region extending over a width from the notch portion to a position at a distance of 2 mm in a direction perpendicular to a curve indicating the notch portion in the main surface.
    Type: Application
    Filed: February 23, 2018
    Publication date: August 13, 2020
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Yusuke YOSHIZUMI, Hideki OSADA, Shugo MINOBE, Yoshiaki HAGI
  • Publication number: 20200176305
    Abstract: Provided are a group III nitride composite substrate having a low sheet resistance and produced with a high yield, and a method for manufacturing the same, as well as a method for manufacturing a group III nitride semiconductor device using the group III nitride composite substrate. A group III nitride composite substrate includes a group III nitride film and a support substrate formed from a material different in chemical composition from the group III nitride film. The group III nitride film is joined to the support substrate in one of a direct manner and an indirect manner. The group III nitride film has a thickness of 10 ?m or more. A sheet resistance of a group III-nitride-film-side main surface is 200 ?/sq or less.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 4, 2020
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keiji ISHIBASHI, Akihiro HACHIGO, Yuki HIROMURA, Naoki MATSUMOTO, Seiji NAKAHATA, Fumitake NAKANISHI, Takuya YANAGISAWA, Koji UEMATSU, Yuki SEKI, Yoshiyuki YAMAMOTO, Yusuke YOSHIZUMI, Hidenori MIKAMI
  • Patent number: 10600676
    Abstract: Provided are a group III nitride composite substrate having a low sheet resistance and produced with a high yield, and a method for manufacturing the same, as well as a method for manufacturing a group III nitride semiconductor device using the group III nitride composite substrate. A group III nitride composite substrate includes a group III nitride film and a support substrate formed from a material different in chemical composition from the group III nitride film. The group III nitride film is joined to the support substrate in one of a direct manner and an indirect manner. The group III nitride film has a thickness of 10 ?m or more. A sheet resistance of a group III-nitride-film-side main surface is 200 ?/sq or less.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: March 24, 2020
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keiji Ishibashi, Akihiro Hachigo, Yuki Hiromura, Naoki Matsumoto, Seiji Nakahata, Fumitake Nakanishi, Takuya Yanagisawa, Koji Uematsu, Yuki Seki, Yoshiyuki Yamamoto, Yusuke Yoshizumi, Hidenori Mikami
  • Patent number: 10158035
    Abstract: A semiconductor stack includes a first-conductivity-type layer of a first conductivity type, the first-conductivity-type layer being formed of a III-V compound semiconductor; a quantum well light-receiving layer formed of a III-V compound semiconductor; and a second-conductivity-type layer of a second conductivity type different from the first conductivity type, the second-conductivity-type layer being formed of a III-V compound semiconductor. The first-conductivity-type layer, the quantum well light-receiving layer, and the second-conductivity-type layer are stacked in this order. The quantum well light-receiving layer has a thickness of 0.5 ?m or more. The quantum well light-receiving layer has a carrier concentration of 1×1016 cm?3 or less.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: December 18, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takuma Fuyuki, Suguru Arikata, Takashi Kyono, Yusuke Yoshizumi, Katsushi Akita
  • Patent number: 10113248
    Abstract: A group III nitride crystal substrate is provided, wherein, a uniform distortion at a surface layer of the crystal substrate is equal to or lower than 1.7×10?3, and wherein a plane orientation of the main surface has an inclination angle equal to or greater than ?10° and equal to or smaller than 10° in a [0001] direction with respect to a plane including a c axis of the crystal substrate. A group III nitride crystal substrate suitable for manufacturing a light emitting device with a blue shift of an emission suppressed, an epilayer-containing group III nitride crystal substrate, a semiconductor device and a method of manufacturing the same can thereby be provided.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: October 30, 2018
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Yusuke Yoshizumi, Shugo Minobe
  • Publication number: 20180166325
    Abstract: Provided are a group III nitride composite substrate having a low sheet resistance and produced with a high yield, and a method for manufacturing the same, as well as a method for manufacturing a group III nitride semiconductor device using the group III nitride composite substrate. A group III nitride composite substrate includes a group III nitride film and a support substrate formed from a material different in chemical composition from the group III nitride film. The group III nitride film is joined to the support substrate in one of a direct manner and an indirect manner. The group III nitride film has a thickness of 10 ?m or more. A sheet resistance of a group III-nitride-film-side main surface is 200 ?/sq or less.
    Type: Application
    Filed: January 24, 2018
    Publication date: June 14, 2018
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keiji ISHIBASHI, Akihiro HACHIGO, Yuki HIROMURA, Naoki MATSUMOTO, Seiji NAKAHATA, Fumitake NAKANISHI, Takuya YANAGISAWA, Koji UEMATSU, Yuki SEKI, Yoshiyuki YAMAMOTO, Yusuke YOSHIZUMI, Hidenori MIKAMI
  • Publication number: 20180122971
    Abstract: A semiconductor stack includes a first-conductivity-type layer of a first conductivity type, the first-conductivity-type layer being formed of a III-V compound semiconductor; a quantum well light-receiving layer formed of a III-V compound semiconductor; and a second-conductivity-type layer of a second conductivity type different from the first conductivity type, the second-conductivity-type layer being formed of a III-V compound semiconductor. The first-conductivity-type layer, the quantum well light-receiving layer, and the second-conductivity-type layer are stacked in this order. The quantum well light-receiving layer has a thickness of 0.5 ?m or more. The quantum well light-receiving layer has a carrier concentration of 1×1016 cm?3 or less.
    Type: Application
    Filed: April 8, 2016
    Publication date: May 3, 2018
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takuma FUYUKI, Suguru ARIKATA, Takashi KYONO, Yusuke YOSHIZUMI, Katsushi AKITA
  • Patent number: 9917004
    Abstract: Provided are a group III nitride composite substrate having a low sheet resistance and produced with a high yield, and a method for manufacturing the same, as well as a method for manufacturing a group III nitride semiconductor device using the group III nitride composite substrate. A group III nitride composite substrate includes a group III nitride film and a support substrate formed from a material different in chemical composition from the group III nitride film. The group III nitride film is joined to the support substrate in one of a direct manner and an indirect manner. The group III nitride film has a thickness of 10 ?m or more. A sheet resistance of a group III-nitride-film-side main surface is 200 ?/sq or less.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: March 13, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keiji Ishibashi, Akihiro Hachigo, Yuki Hiromura, Naoki Matsumoto, Seiji Nakahata, Fumitake Nakanishi, Takuya Yanagisawa, Koji Uematsu, Yuki Seki, Yoshiyuki Yamamoto, Yusuke Yoshizumi, Hidenori Mikami
  • Patent number: 9825134
    Abstract: A layered semiconductor includes a base layer including a substrate and a buffer layer, and a drift layer which is disposed on the base layer and is made of GaN and whose conductivity type is an n-type. The drift layer has an average n-type impurity concentration of 1.5×1016 cm?3 or less in a radial direction of the substrate, and the difference between the maximum n-type impurity concentration and the minimum n-type impurity concentration is 1.5×1015 cm?3 or less.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: November 21, 2017
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Fuminori Mitsuhashi, Yusuke Yoshizumi, Takashi Ishizuka, Masaki Ueno
  • Publication number: 20170283988
    Abstract: A group III nitride crystal substrate is provided, wherein, a uniform distortion at a surface layer of the crystal substrate is equal to or lower than 1.7×10?3, and wherein a plane orientation of the main surface has an inclination angle equal to or greater than ?10° and equal to or smaller than 10° in a [0001] direction with respect to a plane including a c axis of the crystal substrate. A group III nitride crystal substrate suitable for manufacturing a light emitting device with a blue shift of an emission suppressed, an epilayer-containing group III nitride crystal substrate, a semiconductor device and a method of manufacturing the same can thereby be provided.
    Type: Application
    Filed: June 14, 2017
    Publication date: October 5, 2017
    Inventors: Keiji ISHIBASHI, Yusuke YOSHIZUMI, Shugo MINOBE
  • Publication number: 20170207308
    Abstract: A layered semiconductor includes a base layer including a substrate and a buffer layer, and a drift layer which is disposed on the base layer and is made of GaN and whose conductivity type is an n-type. The drift layer has an average n-type impurity concentration of 1.5×1016 cm?3 or less in a radial direction of the substrate, and the difference between the maximum n-type impurity concentration and the minimum n-type impurity concentration is 1.5×1015 cm?3 or less.
    Type: Application
    Filed: June 2, 2015
    Publication date: July 20, 2017
    Inventors: Fuminori Mitsuhashi, Yusuke Yoshizumi, Takashi Ishizuka, Masaki Ueno
  • Patent number: 9708735
    Abstract: A group III nitride crystal substrate is provided, wherein, a uniform distortion at a surface layer of the crystal substrate is equal to or lower than 1.7×10?3, and wherein a plane orientation of the main surface has an inclination angle equal to or greater than ?10° and equal to or smaller than 10° in a [0001] direction with respect to a plane including a c axis of the crystal substrate. A group III nitride crystal substrate suitable for manufacturing a light emitting device with a blue shift of an emission suppressed, an epilayer-containing group III nitride crystal substrate, a semiconductor device and a method of manufacturing the same can thereby be provided.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: July 18, 2017
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keiji Ishibashi, Yusuke Yoshizumi, Shugo Minobe
  • Patent number: 9499925
    Abstract: A group III nitride crystal substrate is provided in which a uniform distortion at a surface layer of the crystal substrate represented by a value of |d1?d2|/d2 obtained from a plane spacing d1 at the X-ray penetration depth of 0.3 ?m and a plane spacing d2 at the X-ray penetration depth of 5 ?m is equal to or lower than 1.9×10?3, and the main surface has a plane orientation inclined in the <10-10> direction at an angle equal to or greater than 10° and equal to or smaller than 80° with respect to one of (0001) and (000-1) planes of the crystal substrate. A group III nitride crystal substrate suitable for manufacturing a light emitting device with a blue shift of an emission suppressed, an epilayer-containing group III nitride crystal substrate, a semiconductor device and a method of manufacturing the same can thereby be provided.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: November 22, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keiji Ishibashi, Yusuke Yoshizumi
  • Patent number: 9231370
    Abstract: A group III nitride semiconductor laser device includes a laser structure, an insulating layer, an electrode and dielectric multilayers. The laser structure includes a semiconductor region on a semi-polar primary surface of a hexagonal group III nitride semiconductor support base. The dielectric multilayers are on first and second end-faces for the laser cavity. The c-axis of the group III nitride tilts by an angle ALPHA from the normal axis of the primary surface in the waveguide axis direction from the first end-face to the second end-faces. A pad electrode has first to third portions provided on the first to third regions of the semiconductor regions, respectively. An ohmic electrode is in contact with the third region through an opening of the insulating layer. The first portion has a first arm, which extends to the first end-face edge. The third portion is away from the first end-face edge.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: January 5, 2016
    Assignees: Sumitomo Electric Industries, Ltd., SONY CORPORATION
    Inventors: Takamichi Sumitomo, Takashi Kyono, Masaki Ueno, Yusuke Yoshizumi, Yohei Enya, Masahiro Adachi, Shimpei Takagi, Katsunori Yanashima
  • Patent number: 9136337
    Abstract: A group III nitride composite substrate includes a support substrate and a group III nitride film. A ratio st/mt of a standard deviation st of the thickness of the group III nitride film, to a mean value mt of the thickness thereof is 0.001 or more and 0.2 or less, and a ratio so/mo of a standard deviation so of an absolute value of an off angle between a main surface of the group III nitride film and a plane of a predetermined plane orientation, to a mean value mo of the absolute value of the off angle thereof is 0.005 or more and 0.6 or less. Accordingly, there is provided a low-cost and large-diameter group III nitride composite substrate including a group III nitride film having a large thickness, a small thickness variation, and a high crystal quality.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: September 15, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keiji Ishibashi, Akihiro Hachigo, Yuki Hiromura, Naoki Matsumoto, Seiji Nakahata, Fumitake Nakanishi, Yusuke Yoshizumi, Hidenori Mikami
  • Publication number: 20150194442
    Abstract: Provided are a group III nitride composite substrate having a low sheet resistance and produced with a high yield, and a method for manufacturing the same, as well as a method for manufacturing a group III nitride semiconductor device using the group III nitride composite substrate. A group III nitride composite substrate includes a group III nitride film and a support substrate formed from a material different in chemical composition from the group III nitride film. The group III nitride film is joined to the support substrate in one of a direct manner and an indirect manner. The group III nitride film has a thickness of 10 ?m or more. A sheet resistance of a group III-nitride-film-side main surface is 200 ?/sq or less.
    Type: Application
    Filed: September 4, 2013
    Publication date: July 9, 2015
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD
    Inventors: Keiji Ishibashi, Akihiro Hachigo, Yuki Hiromura, Naoki Matsumoto, Seiji Nakahata, Fumitake Nakanishi, Takuya Yanagisawa, Koji Uematsu, Yuki Seki, Yoshiyuki Yamamoto, Yusuke Yoshizumi, Hidenori Mikami
  • Patent number: 8953656
    Abstract: A Group III nitride semiconductor laser device includes a laser structure including a support substrate with a semipolar primary surface of a hexagonal Group III nitride semiconductor, and a semiconductor region thereon, and an electrode, provided on the semiconductor region, extending in a direction of a waveguide axis in the laser device. The c-axis of the nitride semiconductor is inclined at an angle ALPHA relative to a normal axis to the semipolar surface toward the waveguide axis direction. The laser structure includes first and second fractured faces intersecting with the waveguide axis. A laser cavity of the laser device includes the first and second fractured faces extending from edges of first and second faces. The first fractured face includes a step provided at an end face of an InGaN layer of the semiconductor region and extending in a direction from one side face to the other of the laser device.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: February 10, 2015
    Assignees: Sumitomo Electric Industries, Ltd., Sony Corporation
    Inventors: Takashi Kyono, Shimpei Takagi, Takamichi Sumitomo, Yusuke Yoshizumi, Yohei Enya, Masaki Ueno, Katsunori Yanashima
  • Patent number: 8929416
    Abstract: A III-nitride semiconductor laser device including: a laser structure including a support base and a semiconductor region, the support base including a hexagonal III-nitride semiconductor and having a semipolar primary surface, and the semiconductor region being provided on the semipolar primary surface of the support base; and an electrode provided on the semiconductor region of the laser structure, the semiconductor region including a first cladding layer, a second cladding layer, and an active layer.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: January 6, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shimpei Takagi, Yusuke Yoshizumi, Koji Katayama, Masaki Ueno, Takatoshi Ikegami