Patents by Inventor Yuta Ohmura

Yuta Ohmura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10870141
    Abstract: Shock absorbers (33) are attached to a press apparatus (10). The press apparatus (10) has a lower die unit (11) and an upper die unit (21) that is movable in vertical directions; the lower die unit and the upper die unit are capable of cooperating with each other to perform press-forming on a blank (W). The upper die unit (21) has an upper forming die (22) that serves as a forming die to perform press-forming on the blank (W) and upper blank holders (25) that partially serve as blank holders. The shock absorbers (33) are respectively disposed between the upper forming die (22) and the upper blank holders (25), and when the upper die unit (21) is moved upward away from the lower die unit (11) to open the upper and lower forming dies after press-forming is performed on the blank (W), impact applied to the upper blank holders (25) by the upper forming die (22) are respectively absorbed by the shock absorbers (33).
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: December 22, 2020
    Assignee: KOGANEI CORPORATION
    Inventor: Yuta Ohmura
  • Publication number: 20180290196
    Abstract: Shock absorbers (33) are attached to a press apparatus (10). The press apparatus (10) has a lower die unit (11) and an upper die unit (21) that is movable in vertical directions; the lower die unit and the upper die unit are capable of cooperating with each other to perform press-forming on a blank (W). The upper die unit (21) has an upper forming die (22) that serves as a forming die to perform press-forming on the blank (W) and upper blank holders (25) that partially serve as blank holders. The shock absorbers (33) are respectively disposed between the upper forming die (22) and the upper blank holders (25), and when the upper die unit (21) is moved upward away from the lower die unit (11) to open the upper and lower forming dies after press-forming is performed on the blank (W), impact applied to the upper blank holders (25) by the upper forming die (22) are respectively absorbed by the shock absorbers (33).
    Type: Application
    Filed: January 7, 2016
    Publication date: October 11, 2018
    Inventor: Yuta Ohmura
  • Patent number: 9133943
    Abstract: A flow path switching valve has an injection side portion formed with an injection chamber and an outer valve seating surface, and a discharge side portion provided with a partition member formed with an inner valve seating surface. A discharge control block communicating with a discharge chamber is formed with a control flow path which is increased and decreased in volume by a discharge rod. To fill the control flow path with grease, a valve element closes an inner flow path and opens an outer flow path. On the other hand, to discharge the grease in the control flow path to the discharge chamber, the valve element closes the outer flow path and opens the inner flow path. After being supplied to the control flow path, the grease is supplied to the discharge chamber.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: September 15, 2015
    Assignees: Koganei Corporation, Canon Kabushiki
    Inventors: Yuta Ohmura, Youhei Edagawa, Susumu Murata
  • Patent number: 8839919
    Abstract: A shock absorber is attached coaxially with a reciprocating rod driven by a reciprocating unit for absorbing an impact force without bending the reciprocating rod. The shock absorber has a hollow rod provided with a through hole. The hollow rod is mounted within an outer cylindrical body. An accommodating space is formed between the hollow rod and the outer cylindrical body. A spring force toward one end portion side of the hollow rod is applied to the outer cylindrical body by a compression coil spring. An annular piston provided in the hollow rod partitions the accommodating space into two liquid chambers. When the impact force is applied to the hollow rod, the liquid flows from one liquid chamber to another liquid chamber through a gap, whereby a resistance force is applied to the hollow rod.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: September 23, 2014
    Assignee: Koganei Corporation
    Inventors: Akiyoshi Horikawa, Yuta Ohmura
  • Patent number: 8584817
    Abstract: A shock absorber is attached coaxially with a reciprocating rod driven by a reciprocating unit to prevent a bending moment from being applied to the reciprocating rod in absorbing an impact force. The shock absorber has a hollow rod and an outer cylindrical body mounted axially movably relatively to and outside the hollow rod. An accommodating space is formed between the hollow rod and the outer cylindrical body. The hollow rod carries an annular piston, which partitions the accommodating space into two liquid chambers. A compression spring biases the outer cylindrical body toward one end of the hollow rod. When an impact forces the outer cylindrical body toward the other end of the hollow rod, liquid flows from one of the liquid chambers to the other through a gap, so that a resistance force is applied to the annular piston.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: November 19, 2013
    Assignee: Koganei Corporation
    Inventors: Akiyoshi Horikawa, Yuta Ohmura
  • Publication number: 20130068330
    Abstract: A flow path switching valve has an injection side portion formed with an injection chamber and an outer valve seating surface, and a discharge side portion provided with a partition member formed with an inner valve seating surface. A discharge control block communicating with a discharge chamber is formed with a control flow path which is increased and decreased in volume by a discharge rod. To fill the control flow path with grease, a valve element closes an inner flow path and opens an outer flow path. On the other hand, to discharge the grease in the control flow path to the discharge chamber, the valve element closes the outer flow path and opens the inner flow path. After being supplied to the control flow path, the grease is supplied to the discharge chamber.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 21, 2013
    Applicants: CANON KABUSHIKI KAISHA, KOGANEI CORPORATION
    Inventors: Yuta Ohmura, Youhei Edagawa, Susumu Murata
  • Patent number: 8342301
    Abstract: A shock absorber is attached coaxially with a reciprocating rod driven by a reciprocating unit to prevent a bending moment from being applied to the reciprocating rod in absorbing an impact force. The shock absorber has a hollow rod provided with a through hole and an outer cylindrical body mounted outside the hollow rod so as to be movable axially relatively and attached to the reciprocating unit. An accommodating space is formed between the hollow rod and the outer cylindrical body. A spring force in a direction of being relatively directed to one end portion side of the hollow rod is applied to the outer cylindrical body by a compression coil spring. An annular piston for partitioning an accommodating space into two liquid chambers is provided in the hollow rod. When the impact force is applied to the hollow rod so as to be slid to the hollow rod, the liquid flows from one liquid chamber to another liquid chamber through a gap, whereby a resistance force is applied to the annular piston.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: January 1, 2013
    Assignee: Koganei Corporation
    Inventors: Akiyoshi Horikawa, Yuta Ohmura
  • Publication number: 20120326367
    Abstract: A shock absorber is attached coaxially with a reciprocating rod driven by a reciprocating unit for absorbing an impact force without bending the reciprocating rod. The shock absorber has a hollow rod provided with a through hole. The hollow rod is mounted within an outer cylindrical body. An accommodating space is formed between the hollow rod and the outer cylindrical body. A spring force toward one end portion side of the hollow rod is applied to the outer cylindrical body by a compression coil spring. An annular piston provided in the hollow rod partitions the accommodating space into two liquid chambers. When the impact force is applied to the hollow rod, the liquid flows from one liquid chamber to another liquid chamber through a gap, whereby a resistance force is applied to the hollow rod.
    Type: Application
    Filed: August 3, 2012
    Publication date: December 27, 2012
    Applicant: Koganei Corporation
    Inventors: Akiyoshi Horikawa, Yuta Ohmura
  • Publication number: 20120241266
    Abstract: A shock absorber is attached coaxially with a reciprocating rod driven by a reciprocating unit to prevent a bending moment from being applied to the reciprocating rod in absorbing an impact force. The shock absorber has a hollow rod and an outer cylindrical body mounted axially movably relatively to and outside the hollow rod. An accommodating space is formed between the hollow rod and the outer cylindrical body. The hollow rod carries an annular piston, which partitions the accommodating space into two liquid chambers. A compression spring biases the outer cylindrical body toward one end of the hollow rod. When an impact forces the outer cylindrical body toward the other end of the hollow rod, liquid flows from one of the liquid chambers to the other through a gap, so that a resistance force is applied to the annular piston.
    Type: Application
    Filed: April 5, 2012
    Publication date: September 27, 2012
    Applicant: KOGANEI CORPORATION
    Inventors: Akiyoshi Horikawa, Yuta Ohmura
  • Patent number: 8181756
    Abstract: A shock absorber is attached coaxially with a reciprocating rod driven by a reciprocating unit to prevent a bending moment from being applied to the reciprocating rod in absorbing an impact force. The shock absorber has a hollow rod and an outer cylindrical body mounted axially movably relatively to and outside the hollow rod. An accommodating space is formed between the hollow rod and the outer cylindrical body. A spring force in a direction of being relatively directed to one end portion side of the hollow rod is applied by a compression spring to the outer cylindrical body. The hollow rod is provided with an annular piston which partitions the accommodating space into two liquid chambers. When an impact force in a direction of being relatively directed to the other end side of the hollow rod is applied to the outer cylindrical body, liquid flows from one of the liquid chambers to the other through a gap, so that a resistance force is applied to the annular piston.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: May 22, 2012
    Assignee: Koganei Corporation
    Inventors: Akiyoshi Horikawa, Yuta Ohmura
  • Publication number: 20090223762
    Abstract: A shock absorber with a possible minimum peak value of the impact acceleration during a collision. The shock absorber includes a tubular cylinder part with an opening at one end and the other end closed, a seal part configured to seal the internal space of this cylinder part at a part closer to this one end inside this cylinder part, fluid filled in the enclosed space formed by this seal part inside this cylinder part, a slidable piston part inside this enclosed space, and a rod part that slidably penetrates this seal part concentrically and is connected to this piston part at one end while projecting out to the other side. This cylinder part has a tapered inner surface inside this enclosed space, reducing its internal diameter from the one end to the other end, and the rate of this taper is within the range from 1/50 to 1/130.
    Type: Application
    Filed: February 9, 2006
    Publication date: September 10, 2009
    Applicant: Koganei Corporation
    Inventors: Akiyoshi Horikawa, Yuta Ohmura
  • Publication number: 20070205065
    Abstract: A shock absorber is attached coaxially with a reciprocating rod driven by a reciprocating unit to prevent a bending moment from being applied to the reciprocating rod in absorbing an impact force. The shock absorber has a hollow rod provided with a through hole and an outer cylindrical body mounted outside the hollow rod so as to be movable axially relatively and attached to the reciprocating unit. An accommodating space is formed between the hollow rod and the outer cylindrical body. A spring force in a direction of being relatively directed to one end portion side of the hollow rod is applied to the outer cylindrical body by a compression coil spring. An annular piston for partitioning an accommodating space into two liquid chambers is provided in the hollow rod. When the impact force is applied to the hollow rod so as to be slid to the hollow rod, the liquid flows from one liquid chamber to another liquid chamber through a gap, whereby a resistance force is applied to the annular piston.
    Type: Application
    Filed: March 1, 2007
    Publication date: September 6, 2007
    Applicant: Koganei Corporation
    Inventors: Akiyoshi Horikawa, Yuta Ohmura
  • Publication number: 20070205064
    Abstract: A shock absorber is attached coaxially with a reciprocating rod driven by a reciprocating unit to prevent a bending moment from being applied to the reciprocating rod in absorbing an impact force. The shock absorber has a hollow rod and an outer cylindrical body mounted axially movably relatively to and outside the hollow rod. An accommodating space is formed between the hollow rod and the outer cylindrical body. A spring force in a direction of being relatively directed to one end portion side of the hollow rod is applied by a compression spring to the outer cylindrical body. The hollow rod is provided with an annular piston which partitions the accommodating space into two liquid chambers. When an impact force in a direction of being relatively directed to the other end side of the hollow rod is applied to the outer cylindrical body, liquid flows from one of the liquid chambers to the other through a gap, so that a resistance force is applied to the annular piston.
    Type: Application
    Filed: March 1, 2007
    Publication date: September 6, 2007
    Applicant: Koganei Corporation
    Inventors: Akiyoshi Horikawa, Yuta Ohmura