Patents by Inventor Yutaka Noda

Yutaka Noda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080020561
    Abstract: The present invention relates to a ball capturing apparatus and method of capturing one ball from plural balls having the same size, and to a solder ball disposing apparatus and method of disposing a solder ball containing solder in a predetermined position on a circuit board, thereby reliably capturing one ball from the plural balls having the same size. The apparatus includes: a holding member 111 including a holding wall 111a air-tightly closing a space S that holds a plurality of balls B having the same size and in which a hole 1111 larger than a size of one ball and smaller than a size of two balls is formed in an upper part of the holding wall; blowup means 112 for blowing the balls B held in the holding member 111 upward; and capturing means 12 for capturing a ball B blown up by the blowup means 112 and reached the hole.
    Type: Application
    Filed: September 28, 2007
    Publication date: January 24, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Masanao FUJII, Toru OKADA, Yutaka NODA, Ryoji MATSUYAMA, Hidehiko KOBAYASHI, Hisao TANAKA
  • Patent number: 7304658
    Abstract: A thermal printer comprises: a ROM 11 for storing a heat history correction table; a RAM 12 for storing the density-related energizing time data for the first and second preceding lines printed immediately before the current line to be printed and the density-related energizing time data before a correction for the current line to be printed which includes a target dot T; and a control section for comparing the density-related energizing time data for the first and second preceding lines and the density-related energizing time data before a correction for both adjacent dots T1 and T2 of the target dot T with the density-related energizing time data before a correction for the target dot T to select reference data, and further for performing a corrective operation for the pre-correction energizing time data for the target dot T using thus selected reference data to calculate energizing time data for the target dot T to be printed, whereby it is possible to prevent the temperature of a thermal head from being r
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: December 4, 2007
    Assignee: Funai Electric Co., Ltd.
    Inventors: Tadahiro Naito, Yutaka Noda
  • Publication number: 20070273745
    Abstract: This image generating apparatus comprises an ink sheet cartridge storing an ink sheet. When sensing arrival of the rear end of the ink sheet, the image generating apparatus cleans the print head by rotating the print head between a printing position and a nonprinting position (separate position) thereby dropping foreign matter adhering to the print head onto the ink sheet.
    Type: Application
    Filed: May 23, 2007
    Publication date: November 29, 2007
    Applicant: Funai Electric Co., Ltd.
    Inventor: Yutaka Noda
  • Publication number: 20060204307
    Abstract: A method of forming an image on a transfer sheet based on electronic data uses an image forming device and an ink ribbon cartridge. An ink ribbon of the ink ribbon cartridge has a plurality of ink films formed thereon with boundary lines being provided between the ink films. In the image forming method, the ink ribbon of the ink ribbon cartridge is conveyed when the power to the image forming device is turned on and the ink ribbon cartridge is installed in the image forming device and before the user inputs the image forming instruction. While the ink ribbon of the ink ribbon cartridge is conveyed, it is determined with a boundary line detecting unit whether at least one of the boundary lines formed on the ink ribbon has reached a predetermined position in the image forming device.
    Type: Application
    Filed: February 28, 2006
    Publication date: September 14, 2006
    Applicant: FUNAI ELECTRIC CO., LTD.
    Inventor: Yutaka Noda
  • Publication number: 20060169750
    Abstract: There are provided a solder ball deforming step of mechanically deforming a ball to break an oxide film of a surface thereof and to expose a nonoxide surface and a solder melting step of heating and melting the deformed solder ball through energy irradiation in a state where the deformed solder ball is mounted on joint units of a loaded work. The solder ball deforming step mechanically deforms the solder ball to form at least two orthogonal contact surfaces in contact with the joint surfaces of the joint units.
    Type: Application
    Filed: May 31, 2005
    Publication date: August 3, 2006
    Applicant: FUJITSU LIMITED
    Inventors: Hisao Tanaka, Masanao Fujii, Toru Okada, Susumu Iida, Hirokazu Yamanishi, Yutaka Noda
  • Publication number: 20060158506
    Abstract: A thermal printer includes a control part; a thermal head that is heated upon a heating instruction from the control part and stops heating upon a heating-ending instruction from the control part; a temperature detector that detects a temperature of the thermal head upon a temperature detection instruction from the control part; and a feed motor that is driven upon a conveyance instruction from the control part and stops the conveyance upon a conveyance-ending instruction from the control part. The control part issues, prior to printing, the heating instruction and the conveyance instruction such that the heating of the thermal head and the conveyance of the paper are performed in parallel. The control part issues the temperature detection instruction as an interrupt every predetermined period of time after the heating instruction is issued, and issues the heating-ending instruction when the temperature of the thermal head reaches a predetermined preheat-ending temperature.
    Type: Application
    Filed: January 9, 2006
    Publication date: July 20, 2006
    Applicant: FUNAI ELECTRIC CO., LTD.
    Inventors: Tadahiro Naito, Yutaka Noda
  • Publication number: 20060132581
    Abstract: A thermal printer comprises: a ROM 11 for storing a heat history correction table; a RAM 12 for storing the density-related energizing time data for the first and second preceding lines printed immediately before the current line to be printed and the density-related energizing time data before a correction for the current line to be printed which includes a target dot T; and a control section for comparing the density-related energizing time data for the first and second preceding lines and the density-related energizing time data before a correction for both adjacent dots T1 and T2 of the target dot T with the density-related energizing time data before a correction for the target dot T to select reference data, and further for performing a corrective operation for the pre-correction energizing time data for the target dot T using thus selected reference data to calculate energizing time data for the target dot T to be printed, whereby it is possible to prevent the temperature of a thermal head from being r
    Type: Application
    Filed: December 6, 2005
    Publication date: June 22, 2006
    Applicant: FUNAI Electric Co., Ltd.
    Inventors: Tadahiro Naito, Yutaka Noda
  • Patent number: 6893512
    Abstract: A solder alloy having a solderability comparable to that of a conventional Pb—Sn solder alloy without having a detrimental effect on the environment and a soldered bond using the same. A solder alloy consisting of Zn: 4.0-10.0 wt %, In: 1.0 to 15.0 wt %, Al: 0.0020 to 0.0100 wt %, and the balance of Sn and unavoidable impurities. A soldered bond of an electric or electronic device composed of the above solder alloy.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: May 17, 2005
    Assignee: Fujitsu Limited
    Inventors: Masayuki Kitajima, Tadaaki Shono, Masakazu Takesue, Yutaka Noda
  • Patent number: 6780988
    Abstract: The invention describes a process for producing P1,P4-di(uridine-5′-)tetraphosphate (U2P4) or a salt thereof from uridine 5′-monophosphate (UMP); wherein the process comprises at least one of the steps (a) and (b): (a) adding UMP diphenylphosphate (UMP-DPP) in divided portions during a step of reacting UMP-DPP with an organic alkali salt of pyrophosphate (PP1) to produce a reaction mixture; wherein at least one equivalent of a first base is present during one portion of the reaction; (b) reacting UMP-DPP with a PPi-organic alkali salt in the presence of at least one equivalent of a second base to produce a reaction mixture, wherein the first base and the second base may be the same or different; (c) subsequently adding water to the reaction mixture to produce an aqueous reaction mixture; and optionally (d) adding an alkali to the aqueous reaction mixture.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: August 24, 2004
    Assignee: Yamasa Corporation
    Inventors: Hideaki Maeda, Toshio Yamada, Hiroshi Sato, Yutaka Noda
  • Patent number: 6744183
    Abstract: A method of bonding a piezoelectric element and an electrode, including the steps of forming a first coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the piezoelectric element, and forming a second coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the electrode. The combination of the materials of the first and second coatings is preferably Au/Au, Au/Al, Zn/Cu, or Sn/Cu. The method further includes the step of bringing the first and second coatings into close contact with each other and heating them under pressure to form a metallic bond or intermetallic compound between the first and second coatings, thereby bonding the piezoelectric element and the electrode.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: June 1, 2004
    Assignee: Fujitsu Limited
    Inventors: Masayuki Kitajima, Yutaka Noda, Seiichi Shimoura, Toru Okada, Masanao Fujii, Kenji Iketaki, Hidehiko Kobayashi, Masakazu Takesue, Keiichi Yamamoto, Hisao Tanaka
  • Patent number: 6617444
    Abstract: The present invention is directed to crystals of P1-(2′-deoxycytidine 5′-)P4-(uridine 5′-)tetraphosphate (dCP4U) or a salt thereof and to a process for producing the crystals. The present invention also provides a process for producing dCP4U involving reacting uridine 5′-monophosphate (UMP), 2′-deoxycytidine 5′-monophosphate (dCMP), diphenyl phosphorochloridate (DPC), and pyrophosphate (PPi). The crystals of dCP4U obtained through the process according to the present invention have high purity and high stability and no hygroscopicity as compared with a freeze-dried product, and thereby serve as a useful raw material for preparing a pharmaceutical. The process for producing dCP4U according to the present invention permits use of inexpensive UMP as a raw material and realizes high yield. Thus, the process is suitable for large-scale synthesis of dCP4U.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: September 9, 2003
    Assignee: Yamasa Corporation
    Inventors: Kenya Mori, Takanori Miyashita, Hideaki Maeda, Hiroshi Sato, Yutaka Noda
  • Publication number: 20030143104
    Abstract: A solder alloy having a solderability comparable to that of a conventional Pb—Sn solder alloy without having a detrimental effect on the environment and a soldered bond using the same.
    Type: Application
    Filed: February 3, 2003
    Publication date: July 31, 2003
    Applicant: FUJITSU LIMITED
    Inventors: Masayuki Kitajima, Tadaaki Shono, Masakazu Takesue, Yutaka Noda
  • Publication number: 20030137223
    Abstract: A method of bonding a piezoelectric element and an electrode, including the steps of forming a first coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the piezoelectric element, and forming a second coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the electrode. The combination of the materials of the first and second coatings is preferably Au/Au, Au/Al, Zn/Cu, or Sn/Cu. The method further includes the step of bringing the first and second coatings into close contact with each other and heating them under pressure to form a metallic bond or intermetallic compound between the first and second coatings, thereby bonding the piezoelectric element and the electrode.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 24, 2003
    Applicant: Fujitsu Limited
    Inventors: Masayuki Kitajima, Yutaka Noda, Seiichi Shimoura, Toru Okada, Masanao Fujii, Kenji Iketaki, Hidehiko Kobayashi, Masakazu Takesue, Keiichi Yamamoto, Hisao Tanaka
  • Patent number: 6541898
    Abstract: A method of bonding a piezoelectric element and an electrode, including the steps of forming a first coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the piezoelectric element, and forming a second coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the electrode. The combination of the materials of the first and second coatings is preferably Au/Au, Au/Al, Zn/Cu, or Sn/Cu. The method further includes the step of bringing the first and second coatings into close contact with each other and heating them under pressure to form a metallic bond or intermetallic compound between the first and second coatings, thereby bonding the piezoelectric element and the electrode.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: April 1, 2003
    Assignee: Fujitsu Limited
    Inventors: Masayuki Kitajima, Yutaka Noda, Seiichi Shimoura, Toru Okada, Masanao Fujii, Kenji Iketaki, Hidehiko Kobayashi, Masakazu Takesue, Keiichi Yamamoto, Hisao Tanaka
  • Publication number: 20020156269
    Abstract: The invention provides crystals of P1,P4-di(uridine 5′-)tetraphosphate or a salt thereof; a process for producing the crystals; and a process for producing P1,P4-di(uridine 5′-)tetraphosphate (U2P4) or a salt thereof from UMP serving as a starting material and by use of DPC and PPi, which process comprises at least one of the following treatment steps: (a) adding UMP diphenylphosphate (UMP-DPP) in divided portions during a step of reaction of UMP-DPP with a PPi-organic alkali salt; (b) carrying out reaction of UMP-DPP with a PPi-organic alkali salt in the presence of a base; and (c) further treating the synthesized U2P4 with an alkali. The crystals of U2P4 or a salt thereof obtained through the process according to the invention have high purity and stability and a less hygroscopicity as compared with a lyophilized product, to thereby serve as a useful raw material for preparing a pharmaceutical.
    Type: Application
    Filed: April 12, 2002
    Publication date: October 24, 2002
    Applicant: YAMASA CORPORATION
    Inventors: Hideaki Maeda, Toshio Yamada, Hiroshi Sato, Yutaka Noda
  • Patent number: 6467141
    Abstract: A method of assembling a micro-actuator is provided in which a base frame having a plurality of actuator bases is placed on a stage, a first adhesive is applied to each of the actuator bases, and a base electrode frame having a plurality of base electrodes is placed on the first adhesive. The first adhesive is semi-cured by heating and pressing. A second adhesive is applied to each of the base electrodes, and a plurality of piezoelectric elements are placed on the second adhesive. The second adhesive is semi-cured by heating and pressing. A third adhesive is,applied to the piezoelectric elements, and a movable electrode frame having a plurality of movable electrodes is placed on the third adhesive. The third adhesive is semi-cured by heating and pressing. Next, a fourth adhesive is applied to each of the movable electrodes, and a hinge plate frame having a plurality of hinge plates is placed on the fourth adhesive. The fourth adhesive is semi-cured by heating and pressing.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: October 22, 2002
    Assignee: Fujitsu Limited
    Inventors: Toru Okada, Kenji Iketaki, Hidehiko Kobayashi, Yutaka Noda, Masayuki Kitajima, Seiichi Shimoura, Masakazu Takesue, Keiichi Yamamoto, Hisao Tanaka, Masanao Fujii
  • Patent number: 6458946
    Abstract: The invention provides crystals of p1,P4-di(uridine 5′-) tetraphosphate or a salt thereof; a process for producing the crystals; and a process for producing P1,P4-di(uridine 5′-) tetraphosphate (U2P4) or a salt thereof from UMP serving as a starting material and by use of DPC and PPi, which process comprises at least one of the following treatment steps: (a) adding UMP diphenylphosphate (UMP-DPP) in divided portions during a step of reaction of UMP-DPP with a PPi-organic alkali salt; (b) carrying out reaction of UMP-DPP with a PPi-organic alkali salt in the presence of a base; and (c) further treating the synthesized U2P4 with an alkali. The crystals of U2P4 or a salt thereof obtained through the process according to the invention have high purity and stability and a less hygroscopicity as compared with a lyophilized product, to thereby serve as a useful raw material for preparing a pharmaceutical.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: October 1, 2002
    Assignee: Yamasa Corporation
    Inventors: Hideaki Maeda, Toshio Yamada, Hiroshi Sato, Yutaka Noda
  • Patent number: 6432806
    Abstract: A method of manufacturing a template having through-holes for attracting and supporting electrically conductive balls by vacuum suction is disclosed. The through-holes are formed by etching and the side walls of the through-holes are smoothed by irradiation, with laser beams, of the side walls of the through-holes. A template and metallic bumps can be formed using this method. Alternatively, the template can be formed in a two-layered structure.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: August 13, 2002
    Assignee: Fujitsu Limited
    Inventors: Masayuki Kitajima, Yutaka Noda, Yoshitaka Muraoka
  • Publication number: 20020074902
    Abstract: A method of bonding a piezoelectric element and an electrode, including the steps of forming a first coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the piezoelectric element, and forming a second coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the electrode. The combination of the materials of the first and second coatings is preferably Au/Au, Au/Al, Zn/Cu, or Sn/Cu. The method further includes the step of bringing the first and second coatings into close contact with each other and heating them under pressure to form a metallic bond or intermetallic compound between the first and second coatings, thereby bonding the piezoelectric element and the electrode.
    Type: Application
    Filed: March 30, 2001
    Publication date: June 20, 2002
    Applicant: FUJITSU LIMITED
    Inventors: Masayuki Kitajima, Yutaka Noda, Seiichi Shimoura, Toru Okada, Masanao Fujii, Kenji Iketaki, Hidehiko Kobayaski, Masakazu Takesue, Keiichi Yamamoto, Hisao Tanaka
  • Publication number: 20020059717
    Abstract: A method of assembling a micro-actuator is provided in which a base frame having a plurality of actuator bases is placed on a stage, a first adhesive is applied to each of the actuator bases, and a base electrode frame having a plurality of base electrodes is placed on the first adhesive. The first adhesive is semi-cured by heating and pressing. A second adhesive is applied to each of the base electrodes, and a plurality of piezoelectric elements are placed on the second adhesive. The second adhesive is semi-cured by heating and pressing. A third adhesive is applied to the piezoelectric elements, and a movable electrode frame having a plurality of movable electrodes is placed on the third adhesive. The third adhesive is semi-cured by heating and pressing. Next, a fourth adhesive is applied to each of the movable electrodes, and a hinge plate frame having a plurality of hinge plates is placed on the fourth adhesive. The fourth adhesive is semi-cured by heating and pressing.
    Type: Application
    Filed: March 29, 2001
    Publication date: May 23, 2002
    Applicant: FUJITSU LIMITED
    Inventors: Toru Okada, Kenji Iketaki, Hidehiko Kobayashi, Yutaka Noda, Masayuki Kitajima, Seiichi Shimoura, Masakazu Takesue, Keiichi Yamamoto, Hisao Tanaka, Masanao Fujii