Patents by Inventor Yuyu Chang

Yuyu Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110003574
    Abstract: Embodiments of the present invention provide constant output DC biasing circuits. Embodiments employ an open loop scheme, instead of a closed loop scheme as used in conventional circuits. In addition, embodiments generate a DC bias voltage that is independent of temperature, process, and power supply variations. Further, embodiments require low amounts of power and silicon.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 6, 2011
    Applicant: Broadcom Corporation
    Inventors: Yuyu CHANG, Hooman DARABI
  • Publication number: 20100317311
    Abstract: Embodiments of a SAW-less RF receiver front-end that includes a frequency translated notch filter (FTNF) are presented. An FTNF includes a passive mixer and a baseband impedance. The baseband impedance includes capacitors that form a low-Q band-stop filter. The passive mixer is configured to translate the baseband impedance to a higher frequency. The translated baseband impedance forms a high-Q notch filter and is presented at the input of the FTNF. The FTNF can be fully integrated in CMOS IC technology (or others, e.g., Bipolar, BiCMOS, and SiGe) and applied in wireless receiver systems including GSM, EDGE, Wideband Code Division Multiple Access (WCDMA), Bluetooth, and wireless LANs (e.g., IEEE 802.11). In addition, embodiments of an apparatus to protect SAW-less RF receiver front-ends are presented.
    Type: Application
    Filed: June 10, 2009
    Publication date: December 16, 2010
    Applicant: Broadcom Corporation
    Inventors: Ahmad MIRZAEI, Hooman DARABI, Yuyu CHANG
  • Patent number: 7840198
    Abstract: Aspects of a method and system for processing signals in a high performance receive chain may include amplifying radio frequency signals in amplifier chains in a multistandard radio frequency front-end, comprising one or more shared processing stages, and combining, with substantially equal gain, a number of phase-shifted radio frequency signals of the radio frequency signals into substantially equal-gain-combined radio frequency signals. The substantially equal-gain-combined radio frequency signals may be demodulated to obtain inphase channels and quadrature channels. A number of inphase channels and quadrature channels may be processed in I-channel processing blocks and Q-channel processing blocks to generate an output analog baseband signal. The multistandard radio frequency front-end may be capable of processing Bluetooth® signals and Wireless Local Area Network (WLAN) signals.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: November 23, 2010
    Assignee: Broadcom Corp.
    Inventors: Arya Behzad, Adedayo Ojo, Yuyu Chang, Hung-Ming Chien, Kishore Rama Rao, Guruprasad Seetharam
  • Patent number: 7782152
    Abstract: A frequency tuning device for use in a crystal oscillator circuit includes a first fine tuning array of capacitors, a second fine tuning array of capacitors and a coarse tuning array of capacitors coupled in parallel to produce a tuning capacitance for tuning the crystal oscillator. The first fine tuning array of capacitors includes a binary weighted switched capacitor network, the second fine tuning array of capacitors includes a thermometer coded switched capacitor network and the coarse tuning array of capacitors includes a binary weighted switched capacitor network with a different unit capacitance value than the first and second fine tuning arrays.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: August 24, 2010
    Assignee: Broadcom Corporation
    Inventors: Hooman Darabi, Yuyu Chang, Zhimin Zhou, Morteza Vadipour
  • Patent number: 7768359
    Abstract: A differential crystal oscillator circuit uses a bias transistor to generate a bias voltage from a bias current. The bias voltage is supplied to the control terminals of a differential pair of transistors. The differential transistors operate to produce a differential output between corresponding end terminals thereof, which is provided to a reference crystal oscillator to establish an oscillation frequency at the differential output.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: August 3, 2010
    Assignee: Broadcom Corporation
    Inventors: Yuyu Chang, Hooman Darabi
  • Patent number: 7679431
    Abstract: Low flicker noise mixer and buffer. This design employs some native metal oxide semiconductor field-effect transistors (MOSFETs) (e.g., having no threshold voltage) within a passive mixer whose gates are driven using clock signals. These native MOSFETs maybe biased at one half of the power supply voltage to provide a lower noise figure. A cooperatively operating buffer employs appropriately places MOSFETs and resistors to ensure the desired gain. Relatively larger valued resistors can be employed to provide for higher voltage gain, and this can sometimes be accompanied with using a higher than typical power supply voltage. Source followers serve as output buffers and also ensure the required output DC voltage level as well. It is also noted that this design can be implemented using n-channel metal oxide semiconductor field-effect transistors (N-MOSFETs) of p-channel metal oxide semiconductor field-effect transistors (P-MOSFETs).
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: March 16, 2010
    Assignee: Broadcom Corporation
    Inventors: Yuyu Chang, Hooman Darabi
  • Patent number: 7671685
    Abstract: Aspects of a method and system for a low power fully differential noise canceling low noise amplifier (NC LNA) are provided. The NC LNA may receive signals via a single ended input and may generate an amplified symmetric differential output from the received signals. The NC LNA may utilize capacitor dividers, such as a capacitor bank, in the single ended input in order to provide impedance transformation that enables low power operation and matching to an input port. The NC LNA may generate one portion of the amplified symmetric differential output via a voltage divider, which may comprise a plurality of capacitors, such as a capacitor bank. The NC LNA may be implemented utilizing one or more circuits.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: March 2, 2010
    Assignee: Broadcom Corporation
    Inventor: Yuyu Chang
  • Publication number: 20100039194
    Abstract: A frequency tuning device for use in a crystal oscillator circuit includes a first fine tuning array of capacitors, a second fine tuning array of capacitors and a coarse tuning array of capacitors coupled in parallel to produce a tuning capacitance for tuning the crystal oscillator. The first fine tuning array of capacitors includes a binary weighted switched capacitor network, the second fine tuning array of capacitors includes a thermometer coded switched capacitor network and the coarse tuning array of capacitors includes a binary weighted switched capacitor network with a different unit capacitance value than the first and second fine tuning arrays.
    Type: Application
    Filed: September 30, 2008
    Publication date: February 18, 2010
    Applicant: BROADCOM CORPORATION
    Inventors: Hooman Darabi, Yuyu Chang, Zhimin Zhou, Morteza Vadipour
  • Publication number: 20100026402
    Abstract: A differential crystal oscillator circuit uses a bias transistor to generate a bias voltage from a bias current. The bias voltage is supplied to the control terminals of a differential pair of transistors. The differential transistors operate to produce a differential output between corresponding end terminals thereof, which is provided to a reference crystal oscillator to establish an oscillation frequency at the differential output.
    Type: Application
    Filed: September 30, 2008
    Publication date: February 4, 2010
    Applicant: BROADCOM CORPORATION
    Inventors: Yuyu Chang, Hooman Darabi
  • Patent number: 7598813
    Abstract: Radio frequency amplifier with constant gain setting. A circuitry that includes triple well connected MOSFETs is employed to eliminate body effects therein. The voltage gain as presented herein, being implemented using a ratio of certain elements within the circuitry, is immune to variations in temperature, power supply voltage, and process variations. One implementation employs an array of selectable MOSFETs to allow for more than one gain setting to be provided by the amplifier. Such an amplifier has a variable/selectable gain setting. An appropriately placed MOSFET is employed to provide the desired input impedance (e.g., 50?). This design can be implemented using multiple n-channel metal oxide semiconductor field-effect transistors (N-MOSFETs) (some of which are triple well connected) and p-channel metal oxide semiconductor field-effect transistors (P-MOSFETs), or alternatively using P-MOSFETs and N-MOSFETs.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: October 6, 2009
    Assignee: Broadcom Corporation
    Inventor: Yuyu Chang
  • Publication number: 20090237165
    Abstract: Cross-coupled low noise amplifier for cellular applications. A circuitry implementation that includes two pairs of metal oxide semiconductor field-effect transistors (MOSFETs) (either N-type of P-type) operates as an LNA, which can be used within any of a wide variety of communication devices. In one embodiment, this design is particularly adaptable to cellular telephone applications. A majority of the elements are integrated within the design and need not be implemented off-chip, and this can provide for a reduction in area required by the circuitry. A very high output impedance is provided by using two transistors (implemented in a triple well configuration) with resistive source degeneration. A higher than typical power supply voltage can be employed (if desired) to accommodate the voltage drops of the resistors and transistors.
    Type: Application
    Filed: May 28, 2009
    Publication date: September 24, 2009
    Applicant: BROADCOM CORPORATION
    Inventors: Yuyu Chang, Hooman Darabi
  • Patent number: 7541870
    Abstract: Cross-coupled low noise amplifier for cellular applications. A circuitry implementation that includes two pairs of metal oxide semiconductor field-effect transistors (MOSFETs) (either N-type of P-type) operates as an LNA, which can be used within any of a wide variety of communication devices. In one embodiment, this design is particularly adaptable to cellular telephone applications. A majority of the elements are integrated within the design and need not be implemented off-chip, and this can provide for a reduction in area required by the circuitry. A very high output impedance is provided by using two transistors (implemented in a triple well configuration) with resistive source degeneration. A higher than typical power supply voltage can be employed (if desired) to accommodate the voltage drops of the resistors and transistors.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: June 2, 2009
    Assignee: Broadcom Corporation
    Inventors: Yuyu Chang, Hooman Darabi
  • Publication number: 20090134942
    Abstract: Radio frequency amplifier with constant gain setting. A circuitry that includes triple well connected MOSFETs is employed to eliminate body effects therein. The voltage gain as presented herein, being implemented using a ratio of certain elements within the circuitry, is immune to variations in temperature, power supply voltage, and process variations. One implementation employs an array of selectable MOSFETs to allow for more than one gain setting to be provided by the amplifier. Such an amplifier has a variable/selectable gain setting. An appropriately placed MOSFET is employed to provide the desired input impedance (e.g., 50?). This design can be implemented using multiple n-channel metal oxide semiconductor field-effect transistors (N-MOSFETs) (some of which are triple well connected) and p-channel metal oxide semiconductor field-effect transistors (P-MOSFETs), or alternatively using P-MOSFETs and N-MOSFETs.
    Type: Application
    Filed: November 26, 2007
    Publication date: May 28, 2009
    Applicant: BROADCOM CORPORATION
    Inventor: Yuyu Chang
  • Publication number: 20090134932
    Abstract: Low flicker noise mixer and buffer. This design employs some native metal oxide semiconductor field-effect transistors (MOSFETs) (e.g., having no threshold voltage) within a passive mixer whose gates are driven using clock signals. These native MOSFETs maybe biased at one half of the power supply voltage to provide a lower noise figure. A cooperatively operating buffer employs appropriately places MOSFETs and resistors to ensure the desired gain. Relatively larger valued resistors can be employed to provide for higher voltage gain, and this can sometimes be accompanied with using a higher than typical power supply voltage. Source followers serve as output buffers and also ensure the required output DC voltage level as well. It is also noted that this design can be implemented using n-channel metal oxide semiconductor field-effect transistors (N-MOSFETs) of p-channel metal oxide semiconductor field-effect transistors (P-MOSFETs).
    Type: Application
    Filed: November 26, 2007
    Publication date: May 28, 2009
    Applicant: BROADCOM CORPORATION
    Inventors: Yuyu Chang, Hooman Darabi
  • Publication number: 20090104873
    Abstract: Fully integrated compact cross-coupled low noise amplifier. A circuitry implementation that includes two pairs of metal oxide semiconductor field-effect transistors (MOSFETs) (either N-type of P-type) operates as an LNA, which can be used within any of a wide variety of communication devices. A majority of the elements are integrated within the design and need not be implemented off-chip, and this can provide for a reduction in area required by the circuitry. A differential 100? input impedance is provided by this design. A higher than typical power supply voltage can be employed (if desired) to accommodate one possible implementation that includes two parallel implemented resistors to ground.
    Type: Application
    Filed: October 18, 2007
    Publication date: April 23, 2009
    Applicant: BROADCOM CORPORATION
    Inventors: Yuyu Chang, Hooman Darabi
  • Publication number: 20090102562
    Abstract: Cross-coupled low noise amplifier for cellular applications. A circuitry implementation that includes two pairs of metal oxide semiconductor field-effect transistors (MOSFETs) (either N-type of P-type) operates as an LNA, which can be used within any of a wide variety of communication devices. In one embodiment, this design is particularly adaptable to cellular telephone applications. A majority of the elements are integrated within the design and need not be implemented off-chip, and this can provide for a reduction in area required by the circuitry. A very high output impedance is provided by using two transistors (implemented in a triple well configuration) with resistive source degeneration. A higher than typical power supply voltage can be employed (if desired) to accommodate the voltage drops of the resistors and transistors.
    Type: Application
    Filed: October 18, 2007
    Publication date: April 23, 2009
    Applicant: BROADCOM CORPORATION
    Inventors: Yuyu Chang, Hooman Darabi
  • Patent number: 7411381
    Abstract: According to one general aspect, an apparatus includes a first resistor in a first current path of a resistor-capacitor (RC) circuit, the resistor connected to a power source. A variable capacitor is included in a second current path of the RC circuit and operably connected to the power source and a virtual ground generator. A comparison circuit is configured to make a determination regarding a voltage VR across the resistor to a ground relative to a voltage VC across the capacitor to a virtual ground from the virtual ground generator. A control circuit is configured to make an adjustment of a value of the variable capacitor, based on the determination.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: August 12, 2008
    Assignee: Broadcom Corporation
    Inventors: Yuyu Chang, Hooman Darabi
  • Publication number: 20080136463
    Abstract: Aspects of a method and system for an integrated LC resonant current gain boosting amplifier may include amplifying within a chip, via an on-chip LC current gain circuit, an alternating current (AC) generated by an on-chip voltage-to-current converter, and converting within the chip, via an on-chip current-to-voltage circuit; the amplified alternating current to an output voltage. The on-chip LC current gain circuit comprises only passive components, which may include one or more resistors, one or more capacitors, and one or more inductors.
    Type: Application
    Filed: January 4, 2007
    Publication date: June 12, 2008
    Inventors: Yuyu Chang, Meng-An Pan
  • Publication number: 20080136521
    Abstract: Aspects of a method and system for a low power fully differential noise canceling low noise amplifier (NC LNA) are provided. The NC LNA may receive signals via a single ended input and may generate an amplified symmetric differential output from the received signals. The NC LNA may utilize capacitor dividers, such as a capacitor bank, in the single ended input in order to provide impedance transformation that enables low power operation and matching to an input port. The NC LNA may generate one portion of the amplified symmetric differential output via a voltage divider, which may comprise a plurality of capacitors, such as a capacitor bank. The NC LNA may be implemented utilizing one or more circuits.
    Type: Application
    Filed: March 30, 2007
    Publication date: June 12, 2008
    Inventor: Yuyu Chang
  • Publication number: 20080139119
    Abstract: Aspects of a method and system for processing signals in a high performance receive chain may include amplifying radio frequency signals in amplifier chains in a multistandard radio frequency front-end, comprising one or more shared processing stages, and combining, with substantially equal gain, a number of phase-shifted radio frequency signals of the radio frequency signals into substantially equal-gain-combined radio frequency signals. The substantially equal-gain-combined radio frequency signals may be demodulated to obtain inphase channels and quadrature channels. A number of inphase channels and quadrature channels may be processed in I-channel processing blocks and Q-channel processing blocks to generate an output analog baseband signal. The multistandard radio frequency front-end may be capable of processing Bluetooth® signals and Wireless Local Area Network (WLAN) signals.
    Type: Application
    Filed: April 9, 2007
    Publication date: June 12, 2008
    Inventors: Arya Behzad, Adedayo Ojo, Yuyu Chang, Hung-Ming Chien, Kishore Rama Rao, Guruprasad Seetharam