Patents by Inventor Yves Larcher

Yves Larcher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220106546
    Abstract: The invention is an automated advanced tissue engineering system that comprises a housing in which one or more tissue engineering modules are accommodated together with a central microprocessor that controls functioning of the tissue engineering modules. In one embodiment, the tissue engineering module comprises a housing supporting one or more bioreactor chamber assemblies and a fluid reservoir operationally engageable with the housing. The bioreactor chamber assemblies may be selected depending on the end product option desired and may include, for example, a cell therapy bioreactor chamber, a single implant bioreactor chamber and a multiple (mosaic) implant bioreactor chamber.
    Type: Application
    Filed: December 15, 2021
    Publication date: April 7, 2022
    Inventors: Timothy J.N. SMITH, Sydney M. PUGH, Lowell MISENER, Guy ORAM, Rupert HAGG, Roberto TOMMASINI, Yves LARCHER
  • Publication number: 20220049199
    Abstract: The invention is an automated advanced tissue engineering system that comprises a housing in which one or more tissue engineering modules are accommodated together with a central microprocessor that controls functioning of the tissue engineering modules. In one embodiment, the tissue engineering module comprises a housing supporting one or more bioreactor chamber assemblies and a fluid reservoir operationally engageable with the housing. The bioreactor chamber assemblies may be selected depending on the end product option desired and may include, for example, a cell therapy bioreactor chamber, a single implant bioreactor chamber and a multiple (mosaic) implant bioreactor chamber.
    Type: Application
    Filed: October 28, 2021
    Publication date: February 17, 2022
    Inventors: Timothy J.N. SMITH, Sydney M. PUGH, Lowell MISENER, Guy ORAM, Rupert HAGG, Roberto TOMMASINI, Yves LARCHER
  • Publication number: 20210269755
    Abstract: The invention provides systems, modules, bioreactor and methods for the automated culture, proliferation, differentiation, production and maintenance of tissue engineered products. In one aspect is an automated tissue engineering system comprising a housing, at least one bioreactor supported by the housing, the bioreactor facilitating physiological cellular functions and/or the generation of one or more tissue constructs from cell and/or tissue sources. A fluid containment system is supported by the housing and is in fluid communication with the bioreactor. One or more sensors are associated with one or more of the housing, bioreactor or fluid containment system for monitoring parameters related to the physiological cellular functions and/or generation of tissue constructs; and a microprocessor linked to one or more of the sensors. The systems, methods and products of the invention find use in various clinical and laboratory settings.
    Type: Application
    Filed: March 25, 2021
    Publication date: September 2, 2021
    Inventors: Timothy J.N. Smith, Sydney M. Pugh, Martin R. Pecaric, Rupert Hagg, Roberto Tommasini, Yves Larcher, Lowell D. Misener
  • Publication number: 20210047597
    Abstract: The invention provides systems, modules, bioreactor and methods for the automated culture, proliferation, differentiation, production and maintenance of tissue engineered products. In one aspect is an automated tissue engineering system comprising a housing, at least one bioreactor supported by the housing, the bioreactor facilitating physiological cellular functions and/or the generation of one or more tissue constructs from cell and/or tissue sources. A fluid containment system is supported by the housing and is in fluid communication with the bioreactor. One or more sensors are associated with one or more of the housing, bioreactor or fluid containment system for monitoring parameters related to the physiological cellular functions and/or generation of tissue constructs; and a microprocessor linked to one or more of the sensors. The systems, methods and products of the invention find use in various clinical and laboratory settings.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 18, 2021
    Inventors: Timothy, J.N. SMITH, Sydney M. PUGH, Martin R. PECARIC, Rupert HAGG, Roberto TOMMASINI, Yves LARCHER, Lowell D. MISENER
  • Publication number: 20210032583
    Abstract: The invention is an automated advanced tissue engineering system that comprises a housing in which one or more tissue engineering modules are accommodated together with a central microprocessor that controls functioning of the tissue engineering modules. In one embodiment, the tissue engineering module comprises a housing supporting one or more bioreactor chamber assemblies and a fluid reservoir operationally engageable with the housing. The bioreactor chamber assemblies may be selected depending on the end product option desired and may include, for example, a cell therapy bioreactor chamber, a single implant bioreactor chamber and a multiple (mosaic) implant bioreactor chamber.
    Type: Application
    Filed: September 4, 2020
    Publication date: February 4, 2021
    Inventors: Timothy J.N. SMITH, Sydney M. PUGH, Lowell MISENER, Guy ORAM, Rupert HAGG, Roberto TOMMASINI, Yves LARCHER
  • Patent number: 10844338
    Abstract: The invention provides systems, modules, bioreactor and methods for the automated culture, proliferation, differentiation, production and maintenance of tissue engineered products. In one aspect is an automated tissue engineering system comprising a housing, at least one bioreactor supported by the housing, the bioreactor facilitating physiological cellular functions and/or the generation of one or more tissue constructs from cell and/or tissue sources. A fluid containment system is supported by the housing and is in fluid communication with the bioreactor. One or more sensors are associated with one or more of the housing, bioreactor or fluid containment system for monitoring parameters related to the physiological cellular functions and/or generation of tissue constructs; and a microprocessor linked to one or more of the sensors. The systems, methods and products of the invention find use in various clinical and laboratory settings.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: November 24, 2020
    Assignee: OCTANE BIOTECH INC.
    Inventors: Timothy J. N. Smith, Sydney M. Pugh, Martin R. Pecaric, Rupert Hagg, Roberto Tommasini, Yves Larcher, Lowell D. Misener
  • Publication number: 20200362288
    Abstract: The invention provides systems, modules, bioreactor and methods for the automated culture, proliferation, differentiation, production and maintenance of tissue engineered products. In one aspect is an automated tissue engineering system comprising a housing, at least one bioreactor supported by the housing, the bioreactor facilitating physiological cellular functions and/or the generation of one or more tissue constructs from cell and/or tissue sources. A fluid containment system is supported by the housing and is in fluid communication with the bioreactor. One or more sensors are associated with one or more of the housing, bioreactor or fluid containment system for monitoring parameters related to the physiological cellular functions and/or generation of tissue constructs; and a microprocessor linked to one or more of the sensors. The systems, methods and products of the invention find use in various clinical and laboratory settings.
    Type: Application
    Filed: July 14, 2020
    Publication date: November 19, 2020
    Inventors: Timothy J.N. SMITH, Sydney M. PUGH, Martin R. PECARIC, Rupert HAGG, Roberto TOMMASINI, Yves LARCHER, Lowell D. MISENER
  • Patent number: 10723986
    Abstract: The invention provides systems, modules, bioreactor and methods for the automated culture, proliferation, differentiation, production and maintenance of tissue engineered products. In one aspect is an automated tissue engineering system comprising a housing, at least one bioreactor supported by the housing, the bioreactor facilitating physiological cellular functions and/or the generation of one or more tissue constructs from cell and/or tissue sources. A fluid containment system is supported by the housing and is in fluid communication with the bioreactor. One or more sensors are associated with one or more of the housing, bioreactor or fluid containment system for monitoring parameters related to the physiological cellular functions and/or generation of tissue constructs; and a microprocessor linked to one or more of the sensors. The systems, methods and products of the invention find use in various clinical and laboratory settings.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: July 28, 2020
    Assignee: OCTANE BIOTECH INC.
    Inventors: Timothy J. N. Smith, Sydney M. Pugh, Martin R. Pecaric, Rupert Hagg, Roberto Tommasini, Yves Larcher, Lowell D. Misener
  • Patent number: 9783768
    Abstract: The automated cell culture arrangement according to the invention comprises at least one closed cell culture module with at least one bioreactor. The closed cell culture module is a closed system, which means that within the closed cell culture module a closed sterile environment can be maintained. The automated cell culture arrangement according to the invention, further comprises at least one pump for pumping liquids within the closed cell culture module and at least one additional tool module, which is configured or configurable to act upon or to monitor the contents of a bioreactor and is movable relative to the at least one closed cell culture module or it is movable relative to one or several components of the at least one closed cell culture module.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: October 10, 2017
    Assignee: Octane Biotech, Inc.
    Inventors: Yves Larcher, Rupert Hagg
  • Patent number: 9701932
    Abstract: The invention provides systems, modules, bioreactor and methods for the automated culture, proliferation, differentiation, production and maintenance of tissue engineered products. In one aspect is an automated tissue engineering system comprising a housing, at least one bioreactor supported by the housing, the bioreactor facilitating physiological cellular functions and/or the generation of one or more tissue constructs from cell and/or tissue sources. A fluid containment system is supported by the housing and is in fluid communication with the bioreactor. One or more sensors are associated with one or more of the housing, bioreactor or fluid containment system for monitoring parameters related to the physiological cellular functions and/or generation of tissue constructs; and a microprocessor linked to one or more of the sensors. The systems, methods and products of the invention find use in various clinical and laboratory settings.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: July 11, 2017
    Assignee: Octane Biotech Inc.
    Inventors: Timothy J. N. Smith, Sydney M. Pugh, Martin R. Pecaric, Rupert Hagg, Roberto Tommasini, Yves Larcher, Lowell D. Misener
  • Publication number: 20170175063
    Abstract: The invention provides systems, modules, bioreactor and methods for the automated culture, proliferation, differentiation, production and maintenance of tissue engineered products. In one aspect is an automated tissue engineering system comprising a housing, at least one bioreactor supported by the housing, the bioreactor facilitating physiological cellular functions and/or the generation of one or more tissue constructs from cell and/or tissue sources. A fluid containment system is supported by the housing and is in fluid communication with the bioreactor. One or more sensors are associated with one or more of the housing, bioreactor or fluid containment system for monitoring parameters related to the physiological cellular functions and/or generation of tissue constructs; and a microprocessor linked to one or more of the sensors. The systems, methods and products of the invention find use in various clinical and laboratory settings.
    Type: Application
    Filed: December 30, 2016
    Publication date: June 22, 2017
    Inventors: Timothy, J.N. Smith, Sydney M. Pugh, Martin R. Pecaric, Rupert Hagg, Roberto Tommasini, Yves Larcher, Lowell D. Misener
  • Publication number: 20170096627
    Abstract: The invention is an automated advanced tissue engineering system that comprises a housing in which one or more tissue engineering modules are accomodated together with a central microprocessor that controls functioning of the tissue engineering modules. In one embodiment, the tissue engineering module comprises a housing supporting one or more bioreactor chamber assemblies and a fluid reservoir operationally engageable with the housing. The bioreactor chamber assemblies may be selected depending on the end product option desired and may include, for example, a cell therapy bioreactor chamber, a single implant bioreactor chamber and a multiple (mosaic) implant bioreactor chamber.
    Type: Application
    Filed: October 14, 2016
    Publication date: April 6, 2017
    Inventors: Timothy J.N. Smith, Sydney M. Pugh, Lowell Misener, Guy Oram, Rupert Hagg, Roberto Tommasini, Yves Larcher
  • Patent number: 9534195
    Abstract: The invention provides systems, modules, bioreactor and methods for the automated culture, proliferation, differentiation, production and maintenance of tissue engineered products. In one aspect is an automated tissue engineering system comprising a housing, at least one bioreactor supported by the housing, the bioreactor facilitating physiological cellular functions and/or the generation of one or more tissue constructs from cell and/or tissue sources. A fluid containment system is supported by the housing and is in fluid communication with the bioreactor. One or more sensors a associated with one or more of the housing, bioreactor or fluid containment system for monitoring parameters related to the physiological cellular functions and/or generation of tissue constructs; and a microprocessor linked to one or more of the sensors. The systems, methods and products of the invention find use in various clinical and laboratory settings.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: January 3, 2017
    Assignee: Octane Biotech Inc.
    Inventors: Timothy J. N. Smith, Sydney M. Pugh, Martin R. Pecaric, Rupert Hagg, Roberto Tommasini, Yves Larcher, Lowell D. Misener
  • Patent number: 9499780
    Abstract: The invention is an automated advanced tissue engineering system that comprises a housing in which one or more tissue engineering modules are accommodated together with a central microprocessor that controls functioning of the tissue engineering modules. In one embodiment, the tissue engineering module comprises a housing supporting one or more bioreactor chamber assemblies and a fluid reservoir operationally engageable with the housing. The bioreactor chamber assemblies may be selected depending on the end product option desired and may include, for example, a cell therapy bioreactor chamber, a single implant bioreactor chamber and a multiple (mosaic) implant bioreactor chamber.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: November 22, 2016
    Assignee: OCTANE BIOTECH INC.
    Inventors: Timothy J. N. Smith, Sydney M. Pugh, Lowell Misener, Guy Oram, Rupert Hagg, Roberto Tommasini, Yves Larcher
  • Publication number: 20140193895
    Abstract: The invention provides systems, modules, bioreactor and methods for the automated culture, proliferation, differentiation, production and maintenance of tissue engineered products. In one aspect is an automated tissue engineering system comprising a housing, at least one bioreactor supported by the housing, the bioreactor facilitating physiological cellular functions and/or the generation of one or more tissue constructs from cell and/or tissue sources. A fluid containment system is supported by the housing and is in fluid communication with the bioreactor. One or more sensors are associated with one or more of the housing, bioreactor or fluid containment system for monitoring parameters related to the physiological cellular functions and/or generation of tissue constructs; and a microprocessor linked to one or more of the sensors. The systems, methods and products of the invention find use in various clinical and laboratory settings.
    Type: Application
    Filed: May 31, 2013
    Publication date: July 10, 2014
    Inventors: Timothy J.N. Smith, Sydney M. Pugh, Martin R. Pecaric, Rupert Hagg, Roberto Tommasini, Yves Larcher, Lowell D. Misener
  • Publication number: 20140186937
    Abstract: The invention provides systems, modules, bioreactor and methods for the automated culture, proliferation, differentiation, production and maintenance of tissue engineered products. In one aspect is an automated tissue engineering system comprising a housing, at least one bioreactor supported by the housing, the bioreactor facilitating physiological cellular functions and/or the generation of one or more tissue constructs from cell and/or tissue sources. A fluid containment system is supported by the housing and is in fluid communication with the bioreactor. One or more sensors are associated with one or more of the housing, bioreactor or fluid containment system for monitoring parameters related to the physiological cellular functions and/or generation of tissue constructs; and a microprocessor linked to one or more of the sensors. The systems, methods and products of the invention find use in various clinical and laboratory settings.
    Type: Application
    Filed: May 31, 2013
    Publication date: July 3, 2014
    Applicant: Octane Biotech Inc.
    Inventors: Timothy J.N. Smith, Sydney M. Pugh, Martin R. Pacaric, Rupert Hagg, Roberto Tommasini, Yves Larcher, Lowell D. Misener
  • Publication number: 20130210130
    Abstract: The automated cell culture arrangement according to the invention comprises at least one closed cell culture module with at least one bioreactor. The closed cell culture module is a closed system, which means that within the closed cell culture module a closed sterile environment can be maintained. The automated cell culture arrangement according to the invention, further comprises at least one pump for pumping liquids within the closed cell culture module and at least one additional tool module, which is configured or configurable to act upon or to monitor the contents of a bioreactor and is movable relative to the at least one closed cell culture module or it is movable relative to one or several components of the at least one closed cell culture module.
    Type: Application
    Filed: April 20, 2011
    Publication date: August 15, 2013
    Applicant: Octane Biotech, Inc.
    Inventors: Yves Larcher, Rupert Hagg
  • Patent number: 8492140
    Abstract: The invention provides systems, modules, bioreactor and methods for the automated culture, proliferation, differentiation, production and maintenance of tissue engineered products. In one aspect is an automated tissue engineering system comprising a housing, at least one bioreactor supported by the housing, the bioreactor facilitating physiological cellular functions and/or the generation of one or more tissue constructs from cell and/or tissue sources. A fluid containment system is supported by the housing and is in fluid communication with the bioreactor. One or more sensors are associated with one or more of the housing, bioreactor or fluid containment system for monitoring parameters related to the physiological cellular functions and/or generation of tissue constructs; and a microprocessor linked to one or more of the sensors. The systems, methods and products of the invention find use in various clinical and laboratory settings.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: July 23, 2013
    Assignee: Octane Biotech Inc.
    Inventors: Timothy J. N. Smith, Martin R. Pecaric, Sydney J. Pugh, Rupert Hagg, Roberto Tommasini, Yves Larcher, Lowell D. Misner
  • Publication number: 20080113426
    Abstract: The invention is an automated advanced tissue engineering system that comprises a housing in which one or more tissue engineering modules are accomodated together with a central microprocessor that controls functioning of the tissue engineering modules. In one embodiment, the tissue engineering module comprises a housing supporting one or more bioreactor chamber assemblies and a fluid reservoir operationally engageable with the housing. The bioreactor chamber assemblies may be selected depending on the end product option desired and may include, for example, a cell therapy bioreactor chamber, a single implant bioreactor chamber and a multiple (mosaic) implant bioreactor chamber.
    Type: Application
    Filed: May 26, 2005
    Publication date: May 15, 2008
    Applicant: MILLENIUM BIOLOGIX INC
    Inventors: Timothy J.N. Smith, Sydney M. Pugh, Lowell Misener, Guy Oram, Rupert Hagg, Roberto Tommasini, Yves Larcher