Patents by Inventor Yvonne LeGrice

Yvonne LeGrice has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6610374
    Abstract: A thin film layer can be formed on a glass substrate by preheating the substrate, depositing an amorphous silicon precursor layer on the substrate at a first temperature, and annealing the substrate in a thermal processing chamber at a second temperature sufficiently higher than the first temperature to substantially reduce the hydrogen concentration in the precursor layer. The preheating and annealing steps can occur in the same thermal processing chamber. Then the precursor layer is converted to a polycrystaline silicon layer by laser annealing.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: August 26, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Chuang-Chuang Tsai, Takako Takehara, Regina Qiu, Yvonne LeGrice, William Reid Harshbarger, Robert McCormick Robertson
  • Publication number: 20020115269
    Abstract: Deposition methods for preparing amorphous silicon based films with controlled resistivity and low stress are described. Such films can be used as the interlayer in FED manufacturing. They can also be used in other electronic devices which require films with controlled resistivity in the range between those of an insulator and of a conductor. The deposition methods described in the present invention employ the method of chemical vapor deposition or plasma-enhanced chemical vapor deposition; other film deposition techniques, such as physical vapor deposition, also may be used. In one embodiment, an amorphous silicon-based film is formed by introducing into a deposition chamber a silicon-based volatile, a conductivity-increasing volatile including one or more components for increasing the conductivity of the amorphous silicon-based film, and a conductivity-decreasing volatile including one or more components for decreasing the conductivity of the amorphous silicon-based film.
    Type: Application
    Filed: November 2, 2001
    Publication date: August 22, 2002
    Applicant: Applied Materials, Inc.
    Inventors: William R. Harshbarger, Takako Takehara, Jeff C. Olsen, Regina Qiu, Yvonne LeGrice, Guofu J. Feng, Robert M. Robertson, Kam Law
  • Patent number: 6352910
    Abstract: Deposition methods for preparing amorphous silicon based films with controlled resistivity and low stress are described. Such films can be used as the interlayer in FED manufacturing. They can also be used in other electronic devices which require films with controlled resistivity in the range between those of an insulator and of a conductor. The deposition methods described in the present invention employ the method of chemical vapor deposition or plasma-enhanced chemical vapor deposition; other film deposition techniques, such as physical vapor deposition, also may be used. In one embodiment, an amorphous silicon-based film is formed by introducing into a deposition chamber a silicon-based volatile, a conductivity-increasing volatile including one or more components for increasing the conductivity of the amorphous silicon-based film, and a conductivity-decreasing volatile including one or more components for decreasing the conductivity of the amorphous silicon-based film.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: March 5, 2002
    Assignee: Applied Komatsu Technology, Inc.
    Inventors: William R. Harshbarger, Takako Takehara, Jeff C. Olsen, Regina Qiu, Yvonne LeGrice, Guofu J. Feng, Robert M. Robertson, Kam Law
  • Publication number: 20020018862
    Abstract: A thin film layer can be formed on a glass substrate by preheating the substrate, depositing an amorphous silicon precursor layer on the substrate at a first temperature, and annealing the substrate in a thermal processing chamber at a second temperature sufficiently higher than the first temperature to substantially reduce the hydrogen concentration in the precursor layer. The preheating and annealing steps can occur in the same thermal processing chamber. Then the precursor layer is converted to a polycrystaline silicon layer by laser annealing.
    Type: Application
    Filed: September 10, 2001
    Publication date: February 14, 2002
    Applicant: Applied Kamatsu Technology, Inc.
    Inventors: Chuang-Chuang Tsai, Takako Takehara, Regina Qiu, Yvonne LeGrice, William Reid Harshbarger, Robert McCormick Robertson
  • Patent number: 6294219
    Abstract: A thin film layer can be formed on a glass substrate by preheating the substrate, depositing an amorphous silicon precursor layer on the substrate at a first temperature, and annealing the substrate in a thermal processing chamber at a second temperature sufficiently higher than the first temperature to substantially reduce the hydrogen concentration in the precursor layer. The preheating and annealing steps can occur in the same thermal processing chamber. Then the precursor layer is converted to a polycrystaline silicon layer by laser annealing.
    Type: Grant
    Filed: March 3, 1998
    Date of Patent: September 25, 2001
    Assignee: Applied Komatsu Technology, Inc.
    Inventors: Chuang-Chuang Tsai, Takako Takehara, Regina Qiu, Yvonne LeGrice, William Reid Harshbarger, Robert McCormick Robertson