Patents by Inventor Zahra Nazarpoor

Zahra Nazarpoor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160361710
    Abstract: The present disclosure describes zero-platinum group metals (ZPGM) material compositions including binary Cu—Mn spinel oxide powders that possess stable reduction/oxidation (redox) reversibility useful for TWC and oxygen storage material (OSM) applications. The redox behavior of Cu—Mn spinel oxide powders is analyzed under oxidation-reduction environments to determine spinel structure stability. The XRD, TPR and XPS analyses confirm the redox stability and reversibility of the Cu—Mn spinel oxide.
    Type: Application
    Filed: June 14, 2016
    Publication date: December 15, 2016
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20160361711
    Abstract: The present disclosure describes zero-platinum group metals (ZPGM) material compositions including binary Cu—Mn spinel oxide powders having stable reduction/oxidation (redox) reversibility useful for TWC and oxygen storage material applications. The behavior of Cu—Mn spinel oxide powder is analyzed under oxidation-reduction environments to determine redox reversibility, catalytic activity, and spinel structure stability. Characterization of spinel powder is performed employing X-ray diffraction analysis, hydrogen temperature-programmed reduction technique, transmission electron microscopy analysis, and X-ray photoelectron spectroscopy analysis. Test results confirm the phase and structural stability of the Cu—Mn spinel oxide during redox reaction, thereby indicating that the Cu—Mn spinel oxide can be employed in a plurality of TWC applications.
    Type: Application
    Filed: June 14, 2016
    Publication date: December 15, 2016
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9517449
    Abstract: Solutions to the problem of washcoat and/or overcoat adhesion loss of ZPGM catalyst on metallic substrates are disclosed. Present disclosure provides a novel process for improving WCA to metallic substrates of ZPGM catalyst systems. Reduction of WCA loss and improved catalyst activity may be enabled by the selection of processing parameters determined from variations of pH and addition of binder to overcoat slurry, and particle size of washcoat. Processing parameters may be applied to a plurality of metallic substrates of different geometries and cell densities.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: December 13, 2016
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Publication number: 20160354765
    Abstract: The present disclosure describes support oxides, including include Niobium Oxide, which are employed in three-way catalytic (TWC) systems. Disclosed herein are TWC sample systems that are configured to include a substrate and one or more of a washcoat layer, an impregnation layer, and/or an overcoat layer. The disclosed one or more of washcoat layer and/or overcoat layer are formed using a slurry that includes an oxide mixture and an Oxygen Storage Material. The disclosed oxide mixtures include niobium oxide (Nb2O5), zirconia, and alumina. Further, other disclosed oxide mixtures additionally include NiO.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 8, 2016
    Inventors: Randal L. Hatfield, Zahra Nazarpoor, Johnny T. Ngo, Stephen J. Golden
  • Patent number: 9511355
    Abstract: Synergies resulting from combinations of catalyst systems including Copper-Manganese material compositions and PGM catalysts are disclosed. Variations of catalyst system configurations are tested to determine most effective material composition, formulation, and configuration for an optimal synergized PGM (SPGM) catalyst system. The synergistic effect of the selected SPGM catalyst system is determined under steady state and oscillating test conditions, from which the optimal NO/CO cross over R-value indicates enhanced catalytic behavior of the selected SPGM catalyst system as compared with current PGM catalysts for TWC applications. According to principles in the present disclosure, application of Pd on alumina-based support as overcoat and Cu—Mn spinel structure supported on Nb2O5—ZrO2 as washcoat on suitable ceramic substrate, produce higher catalytic activity, efficiency, and better performance in TWC condition, especially under lean condition, than commercial PGM catalysts.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: December 6, 2016
    Assignee: Clean Diesel Technologies, Inc. (CDTI)
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9511353
    Abstract: The effect of firing (calcination) cycle on metallic substrates in ZPGM catalyst systems is disclosed. ZPGM catalyst samples with washcoat and overcoat are separately fired in a normal, slow and fast firing cycles to determine the optimal firing cycling that may provide an enhanced catalyst performance, as well as the minimal loss of washcoat adhesion from the samples.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: December 6, 2016
    Assignee: Clean Diesel Technologies, Inc. (CDTI)
    Inventor: Zahra Nazarpoor
  • Patent number: 9511350
    Abstract: Diesel oxidation ZPGM catalyst systems are disclosed. ZPGM catalyst systems may oxidize toxic gases, such as carbon monoxide, hydrocarbons and nitrogen oxides that may be included in exhaust gases. ZPGM catalyst systems may include: a substrate, a washcoat, and an impregnation layer. The washcoat may include at least one carrier material oxides. The impregnation layer may include at least one ZPGM catalyst, carrier material oxides and OSMs. Suitable known in the art chemical techniques, deposition methods and treatment systems may be employed in order to form the disclosed ZPGM catalyst systems.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: December 6, 2016
    Assignee: Clean Diesel Technologies, Inc. (CDTI)
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9511358
    Abstract: Spinels having a general formula of AB2O4, where A and B are a transition metal but not the same transition metal are disclosed. Spinel and spinel compositions of the application are useful in various applications and methods as further described.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: December 6, 2016
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20160346765
    Abstract: Sulfur-resistant synergized platinum group metals (SPGM) catalysts with significant oxidation capabilities are disclosed. Catalytic layers of SPGM catalyst samples are prepared using conventional synthesis techniques to build a washcoat layer completely or substantially free of PGM material. The SPGM catalyst includes a washcoat layer comprising YMn2O5 (pseudobrookite) and an overcoat layer including a Pt/Pd composition with total PGM loading of at or below 5.0 g/ft3. Resistance to sulfur poisoning and catalytic stability is observed under 5.2 gS/L condition to assess significant improvements in NO oxidation, and HC and CO conversions.
    Type: Application
    Filed: June 1, 2015
    Publication date: December 1, 2016
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9498767
    Abstract: Diesel oxidation ZPGM catalyst systems using Y1-x AgxMnO3 perovskite are disclosed. The ZPGM catalyst system compositions may include Y1-x AgxMnO3 perovskite in impregnation component and at least one carrier material oxide in washcoat. The ZPGM catalyst system compositions may also include Y1-x AgxMnO3 perovskite co-precipitated in a carrier material oxide as washcoat. The catalyst activity is measured with an inlet gas mixture containing diesel exhaust composition and characterized according to performance in NO oxidation, NO2 production, NO storage capability and diesel oxidation applications.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: November 22, 2016
    Assignee: Clean Diesel Technologies, Inc. (CDTI)
    Inventor: Zahra Nazarpoor
  • Patent number: 9486784
    Abstract: The effect of aging temperature on oxygen storage materials (OSM) substantially free from platinum group (PGM) and rare earth (RE) metals is disclosed. Samples of ZPGM-ZRE metals OSM, hydrothermally aged at a plurality of high temperatures are found to have significantly high oxygen storage capacity (OSC) and phase stability than conventional PGM catalysts with Ce-based OSM. ZPGM-ZRE metals OSM includes a formulation of Cu—Mn stoichiometric spinel structure deposited on Nb—Zr oxide support and may be converted into powder to be used as OSM application or coated onto catalyst substrate. ZPGM-ZRE metals OSM, after aging condition, presents enhanced level of thermal stability and OSC property which shows improved catalytic activity than conventional PGM catalysts including Ce-based OSM. ZPGM-ZRE metals OSM may be suitable for a vast number of applications, and more particularly in underfloor catalyst systems.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: November 8, 2016
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9486783
    Abstract: A diesel oxidation catalyst (DOC) system for the treatment of exhaust gas emissions, including oxidation of nitrogen oxides (NO), unburned hydrocarbons (HC), and carbon monoxide (CO) is disclosed. Fresh and hydrothermally aged Zero-PGM (ZPGM) DOC samples are prepared and configured with an alumina-based washcoat on ceramic substrate, overcoat including doped Zirconia support oxide, and impregnation layer of Cu—Mn spinel of selected base metal loadings. Testing of fresh and hydrothermally aged ZPGM DOC system samples including Cu—Mn spinel is developed to evaluate the performance of Cu—Mn spinel active phase in oxidation CO, HC, and NO, as well as production of NO2. Key to improvement in light-off performance and NO oxidation is to have a diesel oxidation catalyst that is substantially PGM-free and available for a plurality of applications in lean burn engine operations.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: November 8, 2016
    Assignee: Clean Diesel Technologies, Inc. (CDTI)
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20160312730
    Abstract: Modified calibration strategies for controlling an internal combustion engine and monitoring catalyst performance are disclosed. The modified calibration strategies are implemented using an engine and test cell/catalyst chamber setup wherein the engine is a Euro V 1.2 L turbo gasoline direct injection engine and test cells/catalyst chamber are implemented as substantially free of platinum group metals (PGM) catalysts, herein referred as ZPGM catalysts, and synergized PGM (SPGM) catalysts including a stoichiometric spinel structure within the catalyst configuration. The utilization of an open ECU enables the modified calibration of the engine out targeted AFR. The conventional ECU AFR control strategies are not modified to have the ECU AFR control strategies to continue running normally and only the final engine out targeted AFR values are modified by applying offset AFR values.
    Type: Application
    Filed: April 21, 2015
    Publication date: October 27, 2016
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Maxime Launois, Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9468912
    Abstract: Variations of ZPGM bulk powder catalyst materials, including Cu—Co—Mn ternary spinel systems for TWC applications are disclosed. Bulk powder catalyst samples are prepared employing a plurality of molar ratio variations, including disclosed Cu—Co—Mn spinel on Praseodymium-Zirconia support oxide made by incipient wetness method, or Cu—Co—Mn spinel on Niobium-Zirconia support oxide, which may be synthesized by co-precipitation method. A plurality of bulk powder catalyst samples may be tested by performing isothermal steady state sweep test, employing a flow reactor at inlet temperature of about 450° C., and testing a gas stream from lean to rich condition and influence on TWC performance measured/analyzed, which may lead into significant improvements in the manufacturing of ZPGM bulk powder catalyst materials for TWC applications.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: October 18, 2016
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Oguzhan Selim Yaglidere, Stephen J. Golden
  • Publication number: 20160263561
    Abstract: Variations of ZPGM catalyst material compositions including cerium-cobalt spinel oxide systems for ZPGM DOC applications are disclosed. The disclosed ZPGM catalyst compositions include CexCo3?xO4 spinel and effect of adding copper to Ce-Co as CuxCe1?xCo2O4 spinel systems supported on doped zirconia support oxide, which are produced by the incipient wetness (IW) methodology. ZPGM catalyst compositions are subjected to BET-surface area and XRD analyses to determine the thermal stability and spinel phase formation of supported spinal systems, respectively. DOC performance of ZPGM catalyst compositions is determined under steady state DOC light off test condition to verify/compare oxidation activity of disclosed spinel compositions, desirable and suitable for ZPGM catalyst materials in DOC applications.
    Type: Application
    Filed: March 13, 2015
    Publication date: September 15, 2016
    Applicant: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9433930
    Abstract: The present disclosure relates to selecting the layer of applying ZPGM active phase in washcoat, or applying ZPGM active phase in overcoat, for achieving optimized performance and enhanced thermal stability. Applying ZPGM active phase catalyst in overcoat shows improvements compare to applying ZPGM active phase in washcoat. The selected active phase material may include a chemical composition that is substantially free from PGM, including a formulation of stoichiometric Cu—Mn spinel structure active phase deposited on Niobium-Zirconium support oxide. The selected active phase layer applied in overcoat may include a washcoat of alumina coated on a suitable ceramic substrate. The disclosed active phase may be applied in overcoat to maximize efficiency of catalyst systems, which may exhibit enhanced catalytic activity properties, which may stable after aging and under steady state and oscillating condition, showing optimized performance purifying gases in TWC condition.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: September 6, 2016
    Assignee: Clean Diesel Technologies, Inc. (CDTi)
    Inventor: Zahra Nazarpoor
  • Patent number: 9427730
    Abstract: Bimetallic Synergized Platinum Group Metals (SPGM) catalyst systems for TWC application are disclosed. Disclosed bimetallic SPGM catalyst systems may include a washcoat with a Cu—Mn spinel structure and an overcoat that includes PGMs, such as Pd/Rh or Pt/Rh supported on carrier material oxides, such as alumina. Bimetallic SPGM catalyst systems show significant improvement in nitrogen oxide reduction performance under lean operating conditions, which allows a reduced consumption of fuel. Additionally, disclosed bimetallic SPGM catalyst systems exhibit enhanced catalytic activity for carbon monoxide conversion. Furthermore, bimetallic SPGM catalyst systems are found to have enhanced catalytic activity for fresh, hydrothermally aged and fuel cut aged conditions compared to PGM catalyst system, showing that there is a synergistic effect between PGM catalyst and Cu—Mn spinel within the disclosed SPGM catalyst system which help in performance and thermal stability of disclosed SPGM catalyst systems.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: August 30, 2016
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20160167024
    Abstract: Synergized Platinum Group Metals (SPGM) catalyst system for TWC application is disclosed. Disclosed SPGM catalyst system may include a washcoat that includes Cu—Mn spinel structure, supported on doped ZrO2, and an overcoat that includes PGM, such as Rhodium (Rh) supported on carrier material oxides, such as alumina. SPGM catalyst system shows significant improvement in nitrogen oxide reduction performance under lean and also rich operating conditions. Furthermore, disclosed SPGM catalyst systems are found to have enhanced fresh and aged catalytic activity compared to PGM catalyst system, showing that there is a synergistic effect between PGM catalyst, such as Rh, and Cu—Mn spinel within disclosed SPGM catalyst system, which help in activity and thermal stability of disclosed SPGM catalyst.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 16, 2016
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20160167023
    Abstract: Variations of bulk powder catalyst materials, including a plurality of formulations for stoichiometric and non-stoichiometric Co_Mn—Fe spinel and Cu—Mn—Fe spinel, which may be prepared by incipient wetness method, employing variations of molar ratio and general formulation (CoxFezMn2z)3-?O4, and Co1-xMnxFe2O4 spinel supported on doped ZrO2 support oxide. According to principles in present disclosure, a plurality of formulations for fine grain bulk powder compositions of Cu—Mn—Fe spinel with general formulation of CuxMnyFezO4, may provide solutions for enhanced NOx, CO, and HC conversion performance for TWC applications, employing ZPGM materials for a plurality of TWC applications. Additionally, these types of ternary ZPGM fine grain bulk powder spinel compositions may have a cost effective manufacturing advantage.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Applicant: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Oguzhan S. Yaglidere, Stephen J. Golden
  • Publication number: 20160136619
    Abstract: Variations of bulk powder catalyst material including Cu—Co, Fe—Co, and Co—Mn spinel systems for ZPGM TWC applications are disclosed. The disclosed bulk powder catalyst samples include stoichiometric and non-stoichiometric Cu—Co, Fe—Co, and Co—Mn spinels on Pr6O11—ZrO2 support oxide, prepared using incipient wetness method. Activity measurements under isothermal steady state sweep test condition may be performed rich to lean condition. Catalytic activity of bulk powder samples may be compared to analyze the influence that different bimetallic spinel compositions may have on TWC performance, including ZPGM materials for a plurality of TWC applications. Stoichiometric Cu—Co, Fe—Co, and Co—Mn spinel systems exhibit higher catalytic activity than non-stoichiometric Cu—Co, Fe—Co, and Co—Mn spinel systems. The influence of stoichiometric Cu—Co, Fe—Co, and Co—Mn spinel systems may lead into cost effective manufacturing solutions for ZPGM TWC systems.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 19, 2016
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Zahra Nazarpoor, Oguzhan Selim Yaglidere, Stephen J. Golden