Patents by Inventor Zaixing Huang

Zaixing Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11814299
    Abstract: Embodiments of the present disclosure generally relate to the recovery and extraction of rare earth elements. More specifically, embodiments of the disclosure relate to methods for separating rare earth elements from coal, coal by-product(s), and/or coal-derived product(s). In an embodiment, a method of removing rare earth elements from a coal-derived product is provided. The method generally includes introducing supercritical CO2 to the coal ash to form a first mixture, introducing a first acid to the first mixture to form a second mixture, and removing a first composition from the second mixture, the first composition comprising the one or more rare earth elements.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: November 14, 2023
    Assignee: UNIVERSITY OF WYOMING
    Inventors: Maohong Fan, Zaixing Huang
  • Publication number: 20210347652
    Abstract: Embodiments of the present disclosure generally relate to the recovery and extraction of rare earth elements. More specifically, embodiments of the disclosure relate to methods for separating rare earth elements from coal, coal by-product(s), and/or coal-derived product(s). In an embodiment, a method of removing rare earth elements from a coal-derived product is provided. The method generally includes introducing supercritical CO2 to the coal ash to form a first mixture, introducing a first acid to the first mixture to form a second mixture, and removing a first composition from the second mixture, the first composition comprising the one or more rare earth elements.
    Type: Application
    Filed: May 10, 2021
    Publication date: November 11, 2021
    Inventors: Maohong FAN, Zaixing HUANG
  • Patent number: 10703981
    Abstract: Use of chemical pretreatment agents on the subsequent enzymatic conversion of coal is described. As an example, fungal manganese peroxidase (MnP) produced by the agaric white-rot fungus Bjerkandera adusta, where the enzyme MnP has little effect on the untreated coal controls, was investigated. The nature of pretreatment agents and their applied concentrations were found to have significant impact on subsequent enzymatic conversion of coal. Four agents were investigated: HNO3, catalyzed H2O2, KMnO4, and NaOH. Hydrogen peroxide was found to generate the greatest quantity of total organic carbon from the coal samples employed. Combined chemical and enzymatic treatment of coal is appropriate for enhanced depolymerisation of coal and coal-derived constituents and results in chemically heterogeneous and complex liquefaction products like humic and fulvic acids, which will have important ramifications in the generation of liquid and gaseous fuels from coals as nonpetroleum-derived fuel alternatives.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: July 7, 2020
    Assignee: University of Wyoming
    Inventors: Michael A. Urynowicz, Zaixing Huang
  • Publication number: 20140346090
    Abstract: Use of chemical pretreatment agents on the subsequent enzymatic conversion of coal is described. As an example, fungal manganese peroxidase (MnP) produced by the agaric white-rot fungus Bjerkandera adusta, where the enzyme MnP has little effect on the untreated coal controls, was investigated. The nature of pretreatment agents and their applied concentrations were found to have significant impact on subsequent enzymatic conversion of coal. Four agents were investigated: HNO3, catalyzed H2O2, KMnO4, and NaOH. Hydrogen peroxide was found to generate the greatest quantity of total organic carbon from the coal samples employed. Combined chemical and enzymatic treatment of coal is appropriate for enhanced depolymerisation of coal and coal-derived constituents and results in chemically heterogeneous and complex liquefaction products like humic and fulvic acids, which will have important ramifications in the generation of liquid and gaseous fuels from coals as nonpetroleum-derived fuel alternatives.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 27, 2014
    Inventors: Michael A. Urynowicz, Zaixing Huang