Patents by Inventor Zeke Eller

Zeke Eller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200383767
    Abstract: A stent or other prosthesis may be formed by coating a single continuous wire scaffold with a polymer coating. The polymer coating may consist of layers of electrospun polytetrafluoroethylene (PTFE). Electrospun PTFE of certain porosities may permit endothelial cell growth within the prosthesis.
    Type: Application
    Filed: May 18, 2020
    Publication date: December 10, 2020
    Inventors: Zeke Eller, John William Hall, Robert S. Kellar, Rachel Lynn Simmons, Robert J. Radford, Bart Dolmatch
  • Publication number: 20200375768
    Abstract: Stents are disclosed herein. In some embodiments stents within the scope of this disclosure may comprise a first flared end and second flared end. In some embodiments, a profile of each of the first flared end and the second flared end may circumscribe a portion of separate elliptical arcs. In some embodiments, the stents are formed from braided or woven wires having a constant pitch along a middle region and continuously varying pitches along the first flared end and the second flared end. Methods of manufacturing stents are disclosed herein. Methods of using stents are also disclosed herein.
    Type: Application
    Filed: August 14, 2020
    Publication date: December 3, 2020
    Inventors: Zeke Eller, Thomas Patrick Robinson, Bryan K. Elwood
  • Publication number: 20200369016
    Abstract: A medical appliance or prosthesis may comprise one or more layers of rotational spun nanofibers, including rotational spun polymers. The rotational spun material may comprise layers including layers of polytetrafluoroethylene (PTFE). Rotational spun nanofiber mats of certain porosities may permit tissue ingrowth into or attachment to the prosthesis. Additionally, one or more cuffs may be configured to allow tissue ingrowth to anchor the prosthesis.
    Type: Application
    Filed: June 8, 2020
    Publication date: November 26, 2020
    Inventors: John William Hall, Zeke Eller, Robert S. Kellar, Rachel Lynn Oberg, Bart Dolmatch, Wayne Mower, Robert J. Radford
  • Publication number: 20200369017
    Abstract: A medical appliance or prosthesis may comprise one or more layers of rotational spun nanofibers, including rotational spun polymers. The rotational spun material may comprise layers including layers of polytetrafluoroethylene (PTFE). Rotational spun nanofiber mats of certain porosities may permit tissue ingrowth into or attachment to the prosthesis. Additionally, one or more cuffs may be configured to allow tissue ingrowth to anchor the prosthesis.
    Type: Application
    Filed: June 8, 2020
    Publication date: November 26, 2020
    Inventors: John William Hall, Zeke Eller, Robert S. Kellar, Rachel Lynn Oberg, Bart Dolmatch, Wayne Mower, Robert J. Radford
  • Patent number: 10799378
    Abstract: A vascular prosthesis deployment device and related methods are disclosed. In some embodiments the deployment device may include a delivery catheter assembly. The delivery catheter assembly may include a pliant member, wherein the pliant member is configured receive a vascular prosthesis. The pliant member may also be configured to aid in incrementally deploying a vascular prosthesis.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: October 13, 2020
    Assignee: Merit Medical Systems, Inc.
    Inventors: Wayne Mower, Michael Adams, Zeke Eller, John Hall, Christopher Cindrich
  • Patent number: 10744009
    Abstract: Transluminal stents are disclosed herein. In some embodiments stents within the scope of this disclosure may comprise a first flared end and second flared end. In some embodiments, a profile of each of the first flared end and the second flared end may circumscribe a portion of separate elliptical arcs. In some embodiments, the stents are formed from braided or woven wires having a constant pitch along a middle region and continuously varying pitches along the first flared end and the second flared end. Methods of manufacturing stents are disclosed herein. Methods of using stents are also disclosed herein.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: August 18, 2020
    Assignee: Merit Medical Systems, Inc.
    Inventors: Zeke Eller, Thomas Patrick Robinson, Bryan K. Elwood
  • Patent number: 10675850
    Abstract: A medical appliance or prosthesis may comprise one or more layers of rotational spun nanofibers, including rotational spun polymers. The rotational spun material may comprise layers including layers of polytetrafluoroethylene (PTFE). Rotational spun nanofiber mats of certain porosities may permit tissue ingrowth into or attachment to the prosthesis. Additionally, one or more cuffs may be configured to allow tissue ingrowth to anchor the prosthesis.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: June 9, 2020
    Assignee: Merit Medical Systems, Inc.
    Inventors: John William Hall, Zeke Eller, Robert S. Kellar, Rachel Lynn Oberg, Bart Dolmatch, Wayne Mower, Robert J. Radford
  • Patent number: 10653512
    Abstract: A stent or other prosthesis may be formed by coating a single continuous wire scaffold with a polymer coating. The polymer coating may consist of layers of electrospun polytetrafluoroethylene (PTFE). Electrospun PTFE of certain porosities may permit endothelial cell growth within the prosthesis.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: May 19, 2020
    Assignee: Merit Medical Systems, Inc.
    Inventors: Zeke Eller, John William Hall, Robert S. Kellar, Rachel Lynn Simmons, Robert J. Radford, Bart Dolmatch
  • Patent number: 10653511
    Abstract: A stent or other prosthesis may be formed by coating a single continuous wire scaffold with a polymer coating. The polymer coating may consist of layers of electrospun polytetrafluoroethylene (PTFE). Electrospun PTFE of certain porosities may permit endothelial cell growth within the prosthesis.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: May 19, 2020
    Assignee: Merit Medical Systems, Inc.
    Inventors: Zeke Eller, John William Hall, Robert S. Kellar, Rachel Lynn Simmons, Robert J. Radford, Bart Dolmatch
  • Publication number: 20200146860
    Abstract: Delivery systems and methods for deploying an implantable device are disclosed, which can include a delivery device having an outer tubular member and an inner assembly. The inner assembly is disposed within and is slidably movable relative to the outer tubular member. The inner assembly can include a pusher at a distal portion. The pusher abuts and restricts proximal movement, relative to the inner assembly, of a crimped implantable device within the outer tubular member. The pusher can include a slot to accommodate a suture binding mechanism of the implantable device. The delivery device can include a tip disposed at a distal end. The tip includes a tip transition zone. The inner sheath and outer tubular member can each have sections of distinct rigidity along their lengths with transition zones between the sections. A transition zone of the outer tubular member and a transition zone of the inner sheath can be longitudinally offset.
    Type: Application
    Filed: November 11, 2019
    Publication date: May 14, 2020
    Inventors: Zeke Eller, Thomas Patrick Robinson, Barton Gill, Darla Gill, Bryan K. Elwood
  • Patent number: 10588762
    Abstract: Implantable device embodiments, such as stents, and particularly esophageal stents, formed of a scaffolding structure are disclosed. The scaffolding structure is formed of one or more strand elements arranged in a braided pattern. A covering may coat the scaffolding structure. A valve can be secured to the scaffolding structure and/or the covering. Anti-migration features may be formed by bends in the one or more strand elements. The bends forming the anti-migration features protrude outwardly away from an outer surface of the implantable device.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: March 17, 2020
    Assignee: Merit Medical Systems, Inc.
    Inventors: Darla Gill, Zeke Eller, Rich Snider, Trent Clegg
  • Patent number: 10507268
    Abstract: A medical appliance or prosthesis may comprise one or more layers of electrospun nanofibers, including electrospun polymers. The electrospun material may comprise layers including layers of polytetrafluoroethylene (PTFE). Electrospun nanofiber mats of certain porosities may permit tissue ingrowth into or attachment to the prosthesis.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: December 17, 2019
    Assignee: MERIT MEDICAL SYSTEMS, INC.
    Inventors: John William Hall, Bart Dolmatch, Zeke Eller, Robert S. Kellar, Rachel Lynn Simmons, Wayne L. Mower
  • Patent number: 10470906
    Abstract: Delivery systems and methods for deploying an implantable device are disclosed, which can include a delivery device having an outer tubular member and an inner assembly. The inner assembly is disposed within and is slidably movable relative to the outer tubular member. The inner assembly can include a pusher at a distal portion. The pusher abuts and restricts proximal movement, relative to the inner assembly, of a crimped implantable device within the outer tubular member. The pusher can include a slot to accommodate a suture binding mechanism of the implantable device. The delivery device can include a tip disposed at a distal end. The tip includes a tip transition zone. The inner sheath and outer tubular member can each have sections of distinct rigidity along their lengths with transition zones between the sections. A transition zone of the outer tubular member and a transition zone of the inner sheath can be longitudinally offset.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: November 12, 2019
    Assignee: Merit Medical Systems, Inc.
    Inventors: Zeke Eller, Thomas Patrick Robinson, Barton Gill, Darla Gill, Bryan K. Elwood
  • Patent number: 10285798
    Abstract: A stent comprised of a scaffolding structure having components configured to allow at least a portion of the stent to decrease in diameter in response to an axial force applied to the stent. Further, the components and elements of the stent may be configured to balance transverse forces applied to the stent, thus reducing the incidence of infolding.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: May 14, 2019
    Assignee: MERIT MEDICAL SYSTEMS, INC.
    Inventors: Darla Gill, Zeke Eller, Rich Snider
  • Patent number: 10285834
    Abstract: A vascular prosthesis deployment device and related methods are disclosed. In some embodiments the deployment device may provide audible, tactile, or visual feedback to a practitioner as to the degree of deployment of a prosthesis. The deployment device may also provide mechanical advantage when deploying a prosthesis. The deployment device may be configured to incrementally deploy a prosthesis.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: May 14, 2019
    Assignee: Merit Medical Systems, Inc.
    Inventors: Christopher Noel Cindrich, John William Hall, Zeke Eller, Thomas Robinson, Wayne Mower
  • Publication number: 20180303594
    Abstract: Stents may be deployed within a patient, such as in a lung of a patient, by inserting a stent deployment device through a channel (such as a channel of a bronchoscope) and then deploying the stent via manipulation of the stent deployment device. The stents may include one or more features that facilitate or enable positioning of the stent at a location that is distal of the right bronchus or the left bronchus. Related devices, systems, and methods are also disclosed.
    Type: Application
    Filed: April 18, 2018
    Publication date: October 25, 2018
    Inventors: Zeke Eller, Thomas Patrick Robinson, Bryan K. Elwood
  • Publication number: 20180263799
    Abstract: Prosthesis deployment devices are disclosed herein. In some embodiments, the prosthesis deployment device comprises an elongate delivery catheter assembly configured for electrosurgery and also configured to retain and deploy a prosthesis. Kits comprising the prosthesis deployment devices with a prosthesis loaded into a prosthesis pod of the device are disclosed herein as well as methods of using the prosthesis deployment devices.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 20, 2018
    Inventors: Bryan K. Elwood, Thomas Patrick Robinson, Zeke Eller, John Twomey
  • Publication number: 20180263797
    Abstract: Transluminal stents are disclosed herein. In some embodiments stents within the scope of this disclosure may comprise a first flared end and second flared end. In some embodiments, a profile of each of the first flared end and the second flared end may circumscribe a portion of separate elliptical arcs. In some embodiments, the stents are formed from braided or woven wires having a constant pitch along a middle region and continuously varying pitches along the first flared end and the second flared end. Methods of manufacturing stents are disclosed herein. Methods of using stents are also disclosed herein.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 20, 2018
    Inventors: Zeke Eller, Thomas Patrick Robinson, Bryan K. Elwood
  • Patent number: 10005269
    Abstract: A medical appliance or prosthesis may comprise one or more layers of rotational spun nanofibers, including rotational spun polymers. The rotational spun material may comprise layers including layers of polytetrafluoroethylene (PTFE). Rotational spun nanofiber mats of certain porosities may permit tissue ingrowth into or attachment to the prosthesis. Additionally, one or more cuffs may be configured to allow tissue ingrowth to anchor the prosthesis.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: June 26, 2018
    Assignee: Merit Medical Systems, Inc.
    Inventors: John William Hall, Zeke Eller, Robert S. Kellar, Rachel Lynn Simmons, Bart Dolmatch, Wayne Mower, Robert J. Radford
  • Patent number: 9987833
    Abstract: A medical appliance or prosthesis may comprise one or more layers of rotational spun nanofibers, including rotational spun polymers. The rotational spun material may comprise layers including layers of polytetrafluoroethylene (PTFE). Rotational spun nanofiber mats of certain porosities may permit tissue ingrowth into or attachment to the prosthesis. Additionally, one or more cuffs may be configured to allow tissue ingrowth to anchor the prosthesis.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: June 5, 2018
    Assignee: MERIT MEDICAL SYSTEMS, INC.
    Inventors: John William Hall, Zeke Eller, Robert S. Kellar, Rachel Lynn Simmons, Bart Dolmatch, Wayne Mower, Robert J. Radford