Patents by Inventor Zhaoyin Wen

Zhaoyin Wen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210363065
    Abstract: A sintered composite ceramic, including: a lithium-garnet major phase; and a lithium-rich minor phase, such that the lithium-rich minor phase comprises LixZrO(x+4)/2, with 2?x?10.
    Type: Application
    Filed: April 21, 2021
    Publication date: November 25, 2021
    Inventors: Michael Edward Badding, Jun Jin, Zhen Song, Jianmeng Su, Zhaoyin Wen, Tongping Xiu, Chujun Zheng
  • Publication number: 20210347697
    Abstract: A sintered composite ceramic includes: a lithium-garnet major phase; and a lithium-rich minor phase, such that the lithium-rich minor phase has LixTiO(x+4)/2, with 0.66?x?4. The sintered composite ceramic may exhibit a relative density of at least 90% of a theoretical maximum density of the ceramic, an ionic conductivity of at least 0.35 mS·cm?1, or a critical current density (CCD) of at least 1.0 mA·cm?2.
    Type: Application
    Filed: May 5, 2021
    Publication date: November 11, 2021
    Inventors: Michael Edward Badding, Jun Jin, Zhen Song, Jianmeng Su, Zhaoyin Wen, Tongping Xiu, Chujun Zheng
  • Publication number: 20210288352
    Abstract: A lithium-metal battery, includes: a substrate; a cathode disposed on the substrate; a garnet solid-state electrolyte disposed on the cathode; and a lithium anode disposed on the garnet solid-state electrolyte, such that a discoloration layer is disposed at an interface of the lithium anode and garnet solid-state electrolyte, the discoloration layer includes: a first portion; and a second portion, such that the first portion has a lithium component and the second portion has a garnet component. A method of forming a lithium-metal battery, includes: stacking a garnet source with at least one lithium source; and heating the stack at a temperature of at least 300° C. for a time in a range of 1 sec to 20 min to form a discoloration layer, such that the discoloration layer is disposed at an interface of the garnet source and the lithium source.
    Type: Application
    Filed: March 9, 2021
    Publication date: September 16, 2021
    Inventors: Michael Edward Badding, Jun Jin, Zhen Song, Jianmeng Su, Zhaoyin Wen, Tongping Xiu
  • Publication number: 20210175542
    Abstract: A lithium-sulfur battery includes: a substrate; a composite cathode disposed on the substrate; a solid-state electrolyte disposed on the composite cathode; and a lithium anode disposed on the solid-state electrolyte, such that the composite cathode comprises: active elemental sulfur, conductive carbon, and sulfide electrolyte, and the sulfide electrolyte is uniformly coated on at least one surface of the conductive carbon. A method of forming a composite cathode for a lithium-sulfur battery includes: synthesizing dispersed carbon fiber from cotton to form carbonized dispersed cotton fiber (CDCF) powder; in-situ coating of the CDCF with an electrolyte component to form a composite powder; and mixing active elemental sulfur powder with the composite powder to form the composite cathode.
    Type: Application
    Filed: December 8, 2020
    Publication date: June 10, 2021
    Inventors: Michael Edward Badding, Jun Jin, Zhen Song, Qing Wang, Zhaoyin Wen, Tongping Xiu
  • Publication number: 20210111400
    Abstract: A cathode for a lithium-sulfur battery includes a sulfur-based composite layer having a porosity in a range of 60% to 99%; and a conductive polymer disposed atop the composite layer and within pores of the composite layer. Moreover, a method of forming a cathode for a lithium-sulfur battery includes providing a substrate; disposing a sulfur-based slurry layer on the substrate; freeze-drying the slurry layer to form a sulfur-based composite layer having a porosity in a range of 60% to 99%; and disposing a conductive polymer atop the composite layer and within pores of the composite layer.
    Type: Application
    Filed: June 20, 2019
    Publication date: April 15, 2021
    Inventors: Michael Edward Badding, Jun Jin, Yang Lu, Zhen Song, Zhaoyin Wen, Tongping Xiu
  • Publication number: 20200365897
    Abstract: A lithium-sulfur battery includes: a substrate; a composite cathode disposed on the substrate; a solid-state electrolyte disposed on the composite cathode; and a lithium anode disposed on the solid-state electrolyte, such that the composite cathode comprises: active elemental sulfur, conductive carbon, sulfide electrolyte, and ionic liquid.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 19, 2020
    Inventors: Michael Edward Badding, Jun Jin, Zhen Song, Qing Wang, Zhaoyin Wen, Tongping Xiu
  • Publication number: 20180301754
    Abstract: A composite ceramic including: a lithium garnet major phase; and a grain growth inhibitor minor phase, as defined herein. Also disclosed is a method of making composite ceramic, pellets and tapes thereof, a solid electrolyte, and an electrochemical device including the solid electrolyte, as defined herein.
    Type: Application
    Filed: April 13, 2018
    Publication date: October 18, 2018
    Inventors: Michael Edward Badding, Yinghong Chen, Xiao Huang, Cai Liu, Xinyuan Liu, Yanxia Ann Lu, Zhen Song, Zhaoyin Wen, Tongping Xiu, Nathan Michael Zink
  • Patent number: 9705165
    Abstract: The present invention provides a lithium-air battery air electrode, the air electrode comprises: a collector, an in-situ loading catalyst on collector. The invention also provides a preparation method of the air electrode for lithium-air batteries and the lithium-air batteries. The air electrode of the present invention can greatly improve the performance of the lithium-air battery.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: July 11, 2017
    Assignee: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhaoyin Wen, Yanming Cui, Yu Liu, Xiangwei Wu, Jingchao Zhang
  • Publication number: 20160190667
    Abstract: The present invention provides a lithium-air battery air electrode, the air electrode comprises: a collector, an in-situ loading catalyst on collector. The invention also provides a preparation method of the air electrode for lithium-air batteries and the lithium-air batteries. The air electrode of the present invention can greatly improve the performance of the lithium-air battery.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 30, 2016
    Applicant: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhaoyin WEN, Yanming CUI, Yu LIU, Xiangwei WU, Jingchao ZHANG
  • Publication number: 20150118582
    Abstract: A cathode current collector for a lithium-air battery includes a carbon-free, conductive, porous matrix. The matrix may include a metal boride, a metal carbide, a metal nitride, a metal oxide and/or a metal halide. Example matrix materials are antimony-doped tin oxide and titanium oxide. A carbon-free cathode exhibits improved mechanical and electrochemical properties including improved cycle life relative to conventional carbon-containing porous cathode current collectors.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 30, 2015
    Inventors: Michael Edward Badding, Chen Shen, Yanming Cui, Zhaoyin Wen
  • Publication number: 20150118571
    Abstract: A lithium lanthanum zirconium oxide (LLZO) having a garnet crystal structure contains fluorine in an amount up to 40 mol %. The fluorine, which may be in the form of a lithium compound such as lithium fluoride, may act as a sintering aid and promote formation of the cubic garnet phase. The sintered oxide may be a dense ceramic that includes a plurality of distributed closed pores. Solid electrolyte membranes comprising the oxide can have an ionic conductivity of at least 1×10?4 S/cm.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 30, 2015
    Applicant: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADAMY OF SCIENCES
    Inventors: Cai Liu, Zhaoyin Wen
  • Publication number: 20130330640
    Abstract: A cathode current collector includes a porous metallic or conductive ceramic support and an oxide catalyst in the form of nanowires formed over the support. The nanowire catalyst may be oriented substantially perpendicular to surfaces of the substrate. An example oxide catalyst is cobalt oxide, and an example substrate is nickel foam.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 12, 2013
    Inventors: Michael Edward Badding, Yanming Cui, Lin He, Zhaoyin Wen, Xiangwei Wu Wu
  • Publication number: 20120003532
    Abstract: The invention provides a protected metal anode architecture comprising: a metal anode layer; and an organic protection film formed over and optionally in direct contact with the metal anode layer, wherein the metal anode layer comprises a metal selected from the group consisting of an alkaline metal and an alkaline earth metal, and the organic protection film comprises a reaction product of the metal and an electron donor compound. The invention further provides a method of forming a protected metal anode architecture.
    Type: Application
    Filed: July 5, 2011
    Publication date: January 5, 2012
    Inventors: Michael Edward Badding, Lin He, Lezhi Huang, Yu Liu, Zhaoyin Wen, Meifen Wu