Patents by Inventor Zhenfei PENG

Zhenfei PENG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11991684
    Abstract: This application provides a data transmission method and a related apparatus. The method includes determining, by a first node, a transmission periodicity, where the transmission periodicity includes a first time unit and a second time unit. In the transmission periodicity, data of a first service is transmitted in only the first time unit, and a physical signal is transmitted in the second time unit. The method further includes transmitting, by the first node, the data of the first service in the first time unit, and/or transmitting the physical signal in the second time unit.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: May 21, 2024
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Xinxian Li, Jinlin Peng, Hao Tang, Guohua Zhou, Zhenfei Tang
  • Publication number: 20240131612
    Abstract: Disclosed are a special tooling and method for electron beam welding of a cavity body and a beam tube of a superconducting niobium cavity. The special tooling includes a first clamping device for fixing a flange and a second clamping device for fixing a semi-cavity body, wherein the first clamping device and the second clamping device are fixedly connected. A pressing ring of the first clamping device is disposed around a beam tube of a superconducting niobium cavity and cooperates with a base plate to clamp and fix the flange. The second clamping device includes clamping arms evenly distributed along a circumference of the semi-cavity body, and each clamping arm includes a second pressing plate axially disposed along the beam tube and a pressing block that is disposed on an end portion of the second pressing plate and fixes an edge of the semi-cavity body.
    Type: Application
    Filed: October 18, 2023
    Publication date: April 25, 2024
    Inventors: Jianguo Ma, Wei Wen, Zhihong Liu, Jia Tao, Zhenfei Liu, Liming Peng, Nian Liu, Jiefeng Wu
  • Patent number: 11949514
    Abstract: This application provides an example method and an example apparatus for generating hybrid automatic repeat request (HARQ) information. The method includes receiving, by a terminal device, a first message sent by a network device. The first message is used to indicate that there are a plurality of active bandwidth parts (BWPs) in a cell or that there are M BWP groups in the cell, the M BWP groups may be obtained by dividing, by the network device, N configured BWPs, any BWP group includes an active BWP, M and N are integers greater than or equal to 2, and M is less than or equal to N. The method also includes generating, by the terminal device, HARQ information based on the plurality of active BWPs or the M BWP groups.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: April 2, 2024
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jiehua Xiao, Jinlin Peng, Zhenfei Tang
  • Patent number: 11909357
    Abstract: An amplifier includes an amplification circuit, a power supplying circuit and an input circuit. A first end of the amplification circuit is connected with a first end of the input circuit; a second end of the amplification circuit is connected with the power supplying circuit; and a third end of the amplification circuit is connected with a second end of the input circuit. The power supplying circuit is at least configured to supply power to the amplification circuit so that the amplification circuit operates in an amplification region. The input circuit is at least configured to receive an input signal; the amplification circuit is configured to obtain an amplification gain in case of operating in the amplification region, and amplify the input signal by using the obtained amplification gain.
    Type: Grant
    Filed: December 25, 2020
    Date of Patent: February 20, 2024
    Assignee: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Zhenfei Peng, Qiang Su
  • Patent number: 11764739
    Abstract: In a radio frequency power amplifier with harmonic suppression, one end of an input matching circuit is connected with a radio frequency input end; and another end is connected with a base of a power amplification transistor having a collector connected with a power supply voltage through a first matching branch, and an emitter connected with a first connection point on a package substrate. The collector of the power amplification transistor is connected with a radio frequency output end through a second matching branch that is connected with the package substrate. A harmonic control circuit has a first end connected with the collector of the power amplification transistor, and a second end connected with a second connection point on the package substrate.
    Type: Grant
    Filed: December 27, 2020
    Date of Patent: September 19, 2023
    Assignee: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Zhenfei Peng, Qiang Su
  • Patent number: 11757419
    Abstract: A radio frequency power amplifier circuit includes a controllable attenuation circuit, an input matching circuit, a drive amplification circuit, an inter-stage matching circuit, a power amplification circuit and an output matching circuit connected in sequence, and respectively configured to switch between a negative gain mode and a non-negative gain mode of the radio frequency power amplifier circuit based on a mode control signal, match the impedance between the controllable attenuation circuit and the drive amplification circuit, amplify a signal, configured to match the impedance between the drive amplification circuit and the power amplification circuit, amplify a signal, and match the impedance between the radio frequency power amplifier circuit and a post-stage circuit. A feedback circuit is connected across the drive amplification circuit, and is configured to adjust a gain.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: September 12, 2023
    Assignee: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Zhenfei Peng, Qiang Su, Kun Xiang
  • Publication number: 20230105816
    Abstract: A phase compensation circuit module includes at least a variable resistor, a detection component and a control component. The detection component has a detection end connected with a signal input end of a power amplifier, and is configured to detect an input signal of the signal input end. The control component is connected with the detection component, and is configured to output a control signal according to the input signal detected by the detection component. The variable resistor is connected with an output end of the control component, and is configured to change resistance linked to the power amplifier according to the control signal, the variable resistor constitutes a loop of the power amplifier and is configured to form on-resistance of a transistor of the power amplifier. The on-resistance of the transistor is configured to change as a phase of an output signal of the power amplifier changes.
    Type: Application
    Filed: December 8, 2022
    Publication date: April 6, 2023
    Applicant: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Qiang SU, Zhenfei PENG, Baiming XU
  • Publication number: 20230057192
    Abstract: A compensation circuit module includes a variable resistor, a detection component and a control component. A detection end of the detection component is connected with a DC blocking capacitor of the power amplifier and is configured to detect a voltage swing of an input signal of the DC blocking capacitor. The control component is connected with the detection component and is configured to output a control signal according to the input signal detected by the detection component. The variable resistor is connected with the output end of the control component and is configured to change the resistance connected to the power amplifier according to the control signal, and the resistance of the variable resistor connected to the power amplifier is configured to constitute the feedback resistance of the power amplifier.
    Type: Application
    Filed: September 1, 2022
    Publication date: February 23, 2023
    Applicant: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Qiang SU, Baiming XU, Zhenfei PENG
  • Publication number: 20230006623
    Abstract: A bias circuit of a power amplifier includes a first part circuit, a second part circuit and a power supply, in which the power supply is connected with a power supply end of the first part circuit; two ends of the first part circuit are connected in parallel with two ends of the second part circuit, and after parallel connection one end of a parallel circuit is connected with a gate of the first transistor of the power amplifier in a signal amplification circuit; the first part circuit is configured to provide a first bias voltage, and the second part circuit is configured to provide a second bias voltage; the two bias voltages are superimposed to provide a stable bias voltage; and an impedance of the bias circuit is in a preset range of the impedance.
    Type: Application
    Filed: September 4, 2022
    Publication date: January 5, 2023
    Applicant: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Zhenfei PENG, Qiang SU, Xuwen NI
  • Publication number: 20230006619
    Abstract: A compensation circuit includes a power amplifier, a current bias circuit, a power detection circuit and a current control circuit; the power detection circuit is configured to detect the voltage amplitude of the radio frequency input signal of the power amplifier and output a reference current when the voltage amplitude meets a preset condition; the current control circuit is configured to receive a reference current and output a compensation current to the current bias circuit based on the reference current; the current bias circuit is configured to receive the compensation current and generate the direct-current bias current, and output the compensation current and the direct-current bias current to the power amplifier; and the power amplifier is configured to receive the compensation current and the direct-current bias current, and amplify the power of the radio frequency input signal based on the compensation current and the direct-current bias current.
    Type: Application
    Filed: September 2, 2022
    Publication date: January 5, 2023
    Applicant: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Zhenfei PENG, Qiang SU
  • Publication number: 20220416730
    Abstract: An amplitude modulation-phase modulation compensation circuit includes a detection circuit, a reconfigurable current control voltage source circuit and a phase shifting circuit, in which, the detection circuit is configured to detect the power of an input signal and output a control current according to the power of the input signal when the power of the input signal is greater than a preset power threshold; the reconfigurable current control voltage source circuit is configured to generate a bias voltage according to the control current; the phase shifting circuit is configured to compensate the AM-PM distortion of the radio frequency power amplifier according to the bias voltage. In this way, by the compensation circuit, when the power of the input signal is greater than a preset power threshold, the AM-PM distortion of the radio frequency power amplifier can be compensated according to the power of the input signal.
    Type: Application
    Filed: September 4, 2022
    Publication date: December 29, 2022
    Applicant: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Qiang SU, Baiming XU, Zhenfei PENG
  • Patent number: 11502651
    Abstract: An overvoltage protection and gain bootstrap circuit of a power amplifier includes a power amplification transistor, and a diode reversely connected with a gate of the power amplification transistor. A negative electrode of the diode is connected with the gate of the power transistor, and a positive electrode of the diode is connected with a constant voltage source, such that a function of overvoltage protection and gain bootstrap of the circuit is realized by controlling a turn-on state of the diode. By adding a diode device to the circuit, gate-drain overvoltage protection for the power amplification transistor can be provided, and the gain of the amplifier can be improved before power compression, thereby improving linearity of the power amplifier. The structure of the circuit can be simple, with reduced occupied area hardware cost.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: November 15, 2022
    Assignee: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Zhenfei Peng, Qiang Su, Kun Xiang
  • Patent number: 11251820
    Abstract: A circuit for processing radio frequency signal includes a first path and at least one other second path; herein the first path includes at least one radio frequency amplification device; a first radio frequency current generated by parasitic capacitance of the at least one radio frequency amplification device flows through the at least one second path; the circuit for processing the radio frequency signal further includes at least one resonance module, a first end of each of the at least one resonance module is connected with the first path, and a second end of each of the at least one resonance module is connected with at least a part of second paths of the at least one second path; and the at least one resonance module is configured to generate a resonance current opposite to the first radio frequency current.
    Type: Grant
    Filed: December 27, 2020
    Date of Patent: February 15, 2022
    Assignee: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Qiang Su, Dajie Dai, Zhenfei Peng
  • Patent number: 11177772
    Abstract: A power control circuit includes: a voltage-current converter and a programmable current amplifier; the voltage-current converter is configured to detect an inputted output power control signal, and to convert the output power control signal to a control current and output same; and the programmable current amplifier is configured to receive the control current and output the amplified control current as a bias current of the power amplifier connected to the power control circuit.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: November 16, 2021
    Assignee: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Qiang Su, Zhenfei Peng, Baiming Xu, Jiangtao Yi
  • Publication number: 20210336589
    Abstract: In a radio frequency power amplifier with harmonic suppression, one end of an input matching circuit is connected with a radio frequency input end; and another end is connected with a base of a power amplification transistor having a collector connected with a power supply voltage through a first matching branch, and an emitter connected with a first connection point on a package substrate. The collector of the power amplification transistor is connected with a radio frequency output end through a second matching branch that is connected with the package substrate. A harmonic control circuit has a first end connected with the collector of the power amplification transistor, and a second end connected with a second connection point on the package substrate.
    Type: Application
    Filed: December 27, 2020
    Publication date: October 28, 2021
    Applicant: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Zhenfei PENG, Qiang SU
  • Publication number: 20210297047
    Abstract: An overvoltage protection and gain bootstrap circuit of a power amplifier includes a power amplification transistor, and a diode reversely connected with a gate of the power amplification transistor. A negative electrode of the diode is connected with the gate of the power transistor, and a positive electrode of the diode is connected with a constant voltage source, such that a function of overvoltage protection and gain bootstrap of the circuit is realized by controlling a turn-on state of the diode. By adding a diode device to the circuit, gate-drain overvoltage protection for the power amplification transistor can be provided, and the gain of the amplifier can be improved before power compression, thereby improving linearity of the power amplifier. The structure of the circuit can be simple, with reduced occupied area hardware cost.
    Type: Application
    Filed: December 30, 2020
    Publication date: September 23, 2021
    Applicant: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Zhenfei PENG, Qiang SU, Kun XIANG
  • Publication number: 20210265965
    Abstract: A radio frequency power amplifier circuit includes a controllable attenuation circuit, an input matching circuit, a drive amplification circuit, an inter-stage matching circuit, a power amplification circuit and an output matching circuit connected in sequence, and respectively configured to switch between a negative gain mode and a non-negative gain mode of the radio frequency power amplifier circuit based on a mode control signal, match the impedance between the controllable attenuation circuit and the drive amplification circuit, amplify a signal, configured to match the impedance between the drive amplification circuit and the power amplification circuit, amplify a signal, and match the impedance between the radio frequency power amplifier circuit and a post-stage circuit. A feedback circuit is connected across the drive amplification circuit, and is configured to adjust a gain.
    Type: Application
    Filed: December 29, 2020
    Publication date: August 26, 2021
    Applicant: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Zhenfei PENG, Qiang SU, Kun XIANG
  • Publication number: 20210211148
    Abstract: A circuit for processing radio frequency signal includes a first path and at least one other second path; herein the first path includes at least one radio frequency amplification device; a first radio frequency current generated by parasitic capacitance of the at least one radio frequency amplification device flows through the at least one second path; the circuit for processing radio frequency signal further includes at least one resonance module, a first end of each of the at least one resonance module is connected with the first path, and a second end of each of the at least one resonance module is connected with at least a part of second paths of the at least one second path; and the resonance module is configured to generate a resonance current opposite to the first radio frequency current.
    Type: Application
    Filed: December 27, 2020
    Publication date: July 8, 2021
    Applicant: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Qiang SU, Dajie DAI, Zhenfei PENG
  • Patent number: 11043927
    Abstract: A signal amplifier includes one or more driver stage amplifiers and a power stage amplifier. The one or more driver stage amplifiers are connected in series. The one or more driver stage amplifiers and the power stage amplifier are connected to the same power supply, such that each of the at least one driver stage amplifier forms a loop with the power stage amplifier. The signal amplifier can further include a wave trap unit configured to block an oscillation frequency in the loop. One terminal of the wave trap unit is connected to the loop. The other terminal of the wave trap unit is grounded.
    Type: Grant
    Filed: May 12, 2019
    Date of Patent: June 22, 2021
    Assignee: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Baiming Xu, Qiang Su, Zhenfei Peng
  • Publication number: 20210167732
    Abstract: An amplifier includes an amplification circuit, a power supplying circuit and an input circuit. A first end of the amplification circuit is connected with a first end of the input circuit; a second end of the amplification circuit is connected with the power supplying circuit; and a third end of the amplification circuit is connected with a second end of the input circuit. The power supplying circuit is at least configured to supply power to the amplification circuit so that the amplification circuit operates in an amplification region. The input circuit is at least configured to receive an input signal; the amplification circuit is configured to obtain an amplification gain in case of operating in the amplification region, and amplify the input signal by using the obtained amplification gain.
    Type: Application
    Filed: December 25, 2020
    Publication date: June 3, 2021
    Applicant: SMARTER MICROELECTRONICS (GUANG ZHOU) CO., LTD.
    Inventors: Zhenfei PENG, Qiang SU