Patents by Inventor Zheng Zheng

Zheng Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10809221
    Abstract: Methods are disclosed for measuring an analyte concentration in a fluidic sample. Such methods further allow one to correct and/or compensate for confounding variables such as hematocrit (Hct), temperature or both before providing an analyte concentration. The measurement methods utilize information obtained from test sequences having at least one AC block and at least one pulsed DC block, where pulsed DC block includes at least one recovery potential, and where a closed circuit condition of the electrode system is maintained during the DC block. Also disclosed are devices, apparatuses and systems incorporating the various measurement methods.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: October 20, 2020
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Terry A. Beaty, Scott E. Carpenter, Zheng Zheng Pan, Nigel A. Surridge
  • Publication number: 20200136651
    Abstract: The present disclosure relates to polar decoding methods and apparatus. One example method includes obtaining a polar code sequence, determining at least one first information bit length corresponding to a code length of the polar code sequence, and decoding the polar code sequence based on blind detection by using the code length and the at least one first information bit length. The at least one first information bit length is a part of a preset information bit length set corresponding to the code length. A remaining part of the preset information bit length set is at least one second information bit length. The at least one second information bit length is excluded from being used for the blind detection. Each second information bit length is less than one or more information bit lengths in the at least one first information bit length.
    Type: Application
    Filed: December 26, 2019
    Publication date: April 30, 2020
    Inventors: Zhi YOU, Zheng ZHENG, Nan LI, Yulun ZHANG, Liang ZHANG
  • Publication number: 20200124650
    Abstract: This invention disclosed a system and method for characteristics measurement of electromagnetic signals. The measurement system comprises a multi-repetition-rate pulsed light source, a frequency mixer for electrical signal and optical signal, and a data acquisition and processing device. The measurement system accurately determines the characteristic information of the signal to be measured, such as frequency, phase, intensity, and their variations, by measuring the low frequency mixed signal generated by the multi-repetition-rate pulsed light source and the signal to be measured in the frequency mixer. This system has the advantages of simple structure, high measurement accuracy, low cost and large measurable frequency range. The system can be applied to the measurement of various electromagnetic signals, covering the spectral range from microwave, millimeter wave, to terahertz and even light wave.
    Type: Application
    Filed: May 11, 2018
    Publication date: April 23, 2020
    Applicant: BEIHANG UNIVERSITY
    Inventors: Zheng Zheng, Xin Zhao, Cui Li
  • Publication number: 20200106462
    Abstract: This application relates to a decoding method and a decoder. The decoding method includes: calculating, based on a path selection result of a second hit group in a current code block to be decoded, LLRs (log-likelihood ratios) of a first bit group in the code block, where the path selection result includes L paths; calculating BMs (branch metrics) of the first bit group based on the LLRs; selecting at least L BMs for each of the L paths; determining PMs (path metrics) of the first bit group based on the at least L BMs and a path selection result of a previous hit group of the first bit group; and determining a path selection result of the first bit group based on the PMs. In an entire decoding process, other phases before the PM calculation phase can be performed in parallel, thereby reducing a decoding delay, and improving decoding efficiency.
    Type: Application
    Filed: November 26, 2019
    Publication date: April 2, 2020
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Tao Zhang, Zheng Zheng, Zheng Du
  • Patent number: 10585787
    Abstract: A construction method of a software accelerated testing technology based on a noise resonance includes steps of: (1), collecting a source code of software to be tested; (2), automatically generating software test cases based on an intelligent evolving method, until information same or similar as a fault phenomenon is searched; (3), starting a saturation noise mode, and meanwhile exerting all controllable noise sources at a maximum intensity; (4), exerting all the controllable noise sources at a minimum intensity; (5), starting a strategy noise interference mode, and generating a noise resonance; (6), continuously exerting noises at a noise intensity able to generate the noise resonance; and (7), generating effective test sequences. Through the above steps, construction of the software accelerated testing technology based on the noise resonance is completed, which helps software testers accelerate recurrence of a software fault during testing and update the software to increase a reliability thereof.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: March 10, 2020
    Assignee: BEIHANG UNIVERSITY
    Inventors: Shunkun Yang, Xiaodong Gou, Zheng Zheng, Tingting Huang
  • Publication number: 20190378592
    Abstract: Disclosed herein is a method of estimating the pose of a ligand in a receptor comprising identifying all possible atom pairs of protein-ligand complexes in a given configuration space for a system that comprises proteins; creating a first database and a second database; where the first database comprises associated pairwise distant dependent energies and where the second database comprises all probabilities that include how the atom pairs can combine; combining the first database with the second database via statistical mechanics to accurately estimate binding free energies as well as a pose of a ligand in a receptor; and selecting a protein-ligand complex for further study.
    Type: Application
    Filed: April 16, 2019
    Publication date: December 12, 2019
    Inventors: Zheng Zheng, Kenneth M. Merz, JR.
  • Patent number: 10395743
    Abstract: The present disclosure relates to method and system of implementing one wire programmable circuit by using the same terminal OUT as both main circuit output terminal and the digital I/O interfacing terminal of the circuit. The present invention overcomes the shortcoming of prior arts and does not require the circuit to be powered down first and then powered up again each time the circuit is switched between interfacing mode (read/write/program OTP) and the normal output mode, therefore shorten the time of interfacing with the OTP as well as simplified the interfacing system used to read/write/program the OTP. The present invention also enables the possibility to put the no longer required system clock into sleeping mode after the OTP has been programmed, and has the advantages of reducing system power consumption as well as system noise due to the existing of digital clock.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: August 27, 2019
    Assignee: INTELLISENSE (XIAMEN) MICROELECTRONICS LTD.
    Inventor: Zheng Zheng
  • Publication number: 20190219534
    Abstract: Methods are disclosed for measuring an analyte concentration in a fluidic sample. Such methods allow one to correct and/or compensate for confounding variables such as hematocrit, salt concentration and/or temperature before providing an analyte concentration. The measurement methods use response information from a test sequence having at least one DC block, where DC block includes at least one excitation pulse and at least one recovery pulse, and where a closed circuit condition of an electrode system is maintained during the at least one recovery pulse. Information encoded in the excitation and recovery pulses are used to build within- and across-pulse descriptors to correct/compensate for hematocrit, salt concentration and/or temperature effects on the analyte concentration. Methods of transforming current response data also are disclosed. Further disclosed are devices, apparatuses and systems incorporating the various measurement methods.
    Type: Application
    Filed: March 26, 2019
    Publication date: July 18, 2019
    Applicant: Roche Diabetes Care, Inc.
    Inventors: Scott E. Carpenter, Zheng Zheng Pan
  • Publication number: 20190204258
    Abstract: Methods are disclosed for measuring an analyte concentration in a fluidic sample. Such methods further allow one to correct and/or compensate for confounding variables such as hematocrit (Hct), temperature or both before providing an analyte concentration. The measurement methods utilize information obtained from test sequences having at least one AC block and at least one pulsed DC block, where pulsed DC block includes at least one recovery potential, and where a closed circuit condition of the electrode system is maintained during the DC block. Also disclosed are devices, apparatuses and systems incorporating the various measurement methods.
    Type: Application
    Filed: November 6, 2018
    Publication date: July 4, 2019
    Applicant: Roche Diabetes Care, Inc.
    Inventors: Terry A. Beaty, Scott E. Carpenter, Zheng Zheng Pan, Nigel A. Surridge
  • Patent number: 10332616
    Abstract: Disclosed herein is a method of estimating the pose of a ligand in a receptor comprising identifying all possible atom pairs of protein-ligand complexes in a given configuration space for a system that comprises proteins; creating a first database and a second database; where the first database comprises associated pairwise distant dependent energies and where the second database comprises all probabilities that include how the atom pairs can combine; combining the first database with the second database via statistical mechanics to accurately estimate binding free energies as well as a pose of a ligand in a receptor; and selecting a protein-ligand complex for further study.
    Type: Grant
    Filed: April 30, 2016
    Date of Patent: June 25, 2019
    Assignees: Board of Trustees of Michigan State University, University of Florida Research Foundation, Inc.
    Inventors: Zheng Zheng, Kenneth M. Merz, Jr.
  • Patent number: 10295494
    Abstract: Methods are disclosed for measuring an analyte concentration in a fluidic sample. Such methods allow one to correct and/or compensate for confounding variables such as hematocrit, salt concentration and/or temperature before providing an analyte concentration. The measurement methods use response information from a test sequence having at least one DC block, where DC block includes at least one excitation pulse and at least one recovery pulse, and where a closed circuit condition of an electrode system is maintained during the at least one recovery pulse. Information encoded in the excitation and recovery pulses are used to build within- and across-pulse descriptors to correct/compensate for hematocrit, salt concentration and/or temperature effects on the analyte concentration. Methods of transforming current response data also are disclosed. Further disclosed are devices, apparatuses and systems incorporating the various measurement methods.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: May 21, 2019
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Scott E. Carpenter, Zheng Zheng Pan
  • Publication number: 20190087314
    Abstract: A construction method of a software accelerated testing technology based on a noise resonance includes steps of: (1), collecting a source code of software to be tested; (2), automatically generating software test cases based on an intelligent evolving method, until information same or similar as a fault phenomenon is searched; (3), starting a saturation noise mode, and meanwhile exerting all controllable noise sources at a maximum intensity; (4), exerting all the controllable noise sources at a minimum intensity; (5), starting a strategy noise interference mode, and generating a noise resonance; (6), continuously exerting noises at a noise intensity able to generate the noise resonance; and (7), generating effective test sequences. Through the above steps, construction of the software accelerated testing technology based on the noise resonance is completed, which helps software testers accelerate recurrence of a software fault during testing and update the software to increase a reliability thereof.
    Type: Application
    Filed: November 21, 2018
    Publication date: March 21, 2019
    Inventors: Shunkun Yang, Xiaodong Gou, Zheng Zheng, Tingting Huang
  • Patent number: 10227623
    Abstract: A process for mechanical destructuring of cellulosic biomass was developed that makes use of a short application of high compression, impact, and shearing forces. The biomass may be destructured using a specific energy input that is less than 40% of the total combustible energy of the biomass. The destructured biomass, with or without saccharification and/or in-feed glycosyl hydrolase enzymes, may be used in feed applications.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: March 12, 2019
    Assignee: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Wathudura Indika Namal De Silva, Paul Joseph Fagan, F Glenn Gallagher, Zheng-Zheng Huang, Guangliang Gary Liu, Aaron Perelman, Luis Fernando Romero Millan, Anton Shpilsky, Daniel A Slanac, Maria Walsh
  • Patent number: 10197524
    Abstract: Methods are disclosed for scaling body fluid analysis data to correct and/or compensate for confounding variables such as hematocrit (Hct), temperature, variations in electrode conductivity or combinations thereof before providing an analyte concentration. The scaling methods utilize current response data obtained from an AC block applied prior to a DC block to minimize the impact of such confounding variables upon the observed DC current response before creating descriptors or algorithms. The scaling methods therefore compensate the measured DC current by using data from the AC block made on the same sample. Also disclosed are devices, apparatuses and systems incorporating the various scaling methods.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: February 5, 2019
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Harvey B. Buck, Jr., Scott E. Carpenter, Zheng Zheng Pan, Rene Valverde-Ventura
  • Patent number: 10119931
    Abstract: Methods are disclosed for measuring an analyte concentration in a fluidic sample. Such methods further allow one to correct and/or compensate for confounding variables such as hematocrit (Hct), temperature or both before providing an analyte concentration. The measurement methods utilize information obtained from test sequences having at least one AC block and at least one pulsed DC block, where pulsed DC block includes at least one recovery potential, and where a closed circuit condition of the electrode system is maintained during the DC block. Also disclosed are devices, apparatuses and systems incorporating the various measurement methods.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: November 6, 2018
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Terry A. Beaty, Jr., Scott E. Carpenter, Zheng Zheng Pan, Nigel A. Surridge
  • Patent number: 10041902
    Abstract: Methods are disclosed for scaling body fluid analysis data to correct and/or compensate for confounding variables such as hematocrit (Hct), temperature, variations in electrode conductivity or combinations thereof before providing an analyte concentration. The scaling methods utilize current response data obtained from an AC block applied prior to a DC block to minimize the impact of such confounding variables upon the observed DC current response before creating descriptors or algorithms. The scaling methods therefore compensate the measured DC current by using data from the AC block made on the same sample. Also disclosed are devices, apparatuses and systems incorporating the various scaling methods.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: August 7, 2018
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Harvey B. Buck, Jr., Scott E. Carpenter, Zheng Zheng Pan, Rene Valverde-Ventura
  • Patent number: 9976977
    Abstract: Methods are disclosed for scaling body fluid analysis data to correct and/or compensate for confounding variables such as hematocrit (Hct), temperature, variations in electrode conductivity or combinations thereof before providing an analyte concentration. The scaling methods utilize current response data obtained from an AC block applied prior to a DC block to minimize the impact of such confounding variables upon the observed DC current response before creating descriptors or algorithms. The scaling methods therefore compensate the measured DC current by using data from the AC block made on the same sample. Also disclosed are devices, apparatuses and systems incorporating the various scaling methods.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: May 22, 2018
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Harvey B. Buck, Jr., Scott E. Carpenter, Zheng Zheng Pan, Rene Valverde-Ventura
  • Patent number: 9885614
    Abstract: A method and a system for measuring an optical asynchronous sample signal. The system for measuring an optical asynchronous sampling signal comprises a pulsed optical source capable of emitting two optical pulse sequences with different repetition frequencies, a signal optical path, a reference optical path, and a detection device. Since the optical asynchronous sampling signal can be measured by merely using one pulsed optical source, the complexity and cost of the system are reduced. A multi-frequency optical comb system using the pulsed optical source and a method for implementing the multi-frequency optical comb are further disclosed.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: February 6, 2018
    Assignee: BEIHANG UNIVERSITY
    Inventors: Zheng Zheng, Xin Zhao, Lei Liu, Jiansheng Liu
  • Patent number: 9863815
    Abstract: A method and a system for measuring an optical asynchronous sample signal. The system for measuring an optical asynchronous sampling signal comprises a pulsed optical source capable of emitting two optical pulse sequences with different repetition frequencies, a signal optical path, a reference optical path, and a detection device. Since the optical asynchronous sampling signal can be measured by merely using one pulsed optical source, the complexity and cost of the system are reduced. A multi-frequency optical comb system using the pulsed optical source and a method for implementing the multi-frequency optical comb are further disclosed.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: January 9, 2018
    Assignee: BEIHANG UNIVERSITY
    Inventors: Zheng Zheng, Xin Zhao, Lei Liu, Jiansheng Liu
  • Publication number: 20170345513
    Abstract: The present disclosure relates to method and system of implementing one wire programmable circuit by using the same terminal OUT as both main circuit output terminal and the digital I/O interfacing terminal of the circuit. The present invention overcomes the shortcoming of prior arts and does not require the circuit to be powered down first and then powered up again each time the circuit is switched between interfacing mode (read/write/program OTP) and the normal output mode, therefore shorten the time of interfacing with the OTP as well as simplified the interfacing system used to read/write/program the OTP. The present invention also enables the possibility to put the no longer required system clock into sleeping mode after the OTP has been programmed, and has the advantages of reducing system power consumption as well as system noise due to the existing of digital clock.
    Type: Application
    Filed: August 11, 2017
    Publication date: November 30, 2017
    Inventor: Zheng ZHENG