Patents by Inventor Zhian He

Zhian He has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141540
    Abstract: Methods and electroplating systems for controlling plating electrolyte concentration on an electrochemical plating apparatus for substrates are disclosed. A method involves: (a) providing an electroplating solution to an electroplating system; (b) electroplating the metal onto the substrate while the substrate is held in a cathode chamber of an electroplating cell of electroplating system; (c) supplying the make-up solution to the electroplating system via a make-up solution inlet; and (d) supplying the secondary electroplating solution to the electroplating system via a secondary electroplating solution inlet. The secondary electroplating solution includes some or all components of the electroplating solution. At least one component of the secondary electroplating solution has a concentration that significantly deviates from its target concentration.
    Type: Application
    Filed: November 6, 2023
    Publication date: May 2, 2024
    Inventors: Zhian He, Shantinath Ghongadi, Quan Ma, Hyungjun Hur, Cian Sweeney, Quang Nguyen, Rezaul Karim, Jingbin Feng
  • Patent number: 11859300
    Abstract: Methods and electroplating systems for controlling plating electrolyte concentration on an electrochemical plating apparatus for substrates are disclosed. A method involves: (a) providing an electroplating solution to an electroplating system; (b) electroplating the metal onto the substrate while the substrate is held in a cathode chamber of an electroplating cell of electroplating system; (c) supplying the make-up solution to the electroplating system via a make-up solution inlet; and (d) supplying the secondary electroplating solution to the electroplating system via a secondary electroplating solution inlet. The secondary electroplating solution includes some or all components of the electroplating solution. At least one component of the secondary electroplating solution has a concentration that significantly deviates from its target concentration.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: January 2, 2024
    Assignee: Lam Research Corporation
    Inventors: Zhian He, Shantinath Ghongadi, Quan Ma, Hyungjun Hur, Cian Sweeney, Quang Nguyen, Rezaul Karim, Jingbin Feng
  • Publication number: 20230313408
    Abstract: An electrochemical deposition system configured for electrochemical plating of a substrate includes a chamber, an electrode, a plating cup and a controller. The chamber holds a plating bath. The electrode is disposed in the plating bath. The plating cup includes a contact ring. The contact ring includes contacts. The contacts are immersed in the plating bath. The controller is configured to apply a voltage signal across the contact ring and the electrode to remove residual from the contacts. The voltage signal includes a plating-de-plating waveform. The plating-de-plating waveform includes multiple cycles. Each of the cycles includes a pair of pulses with different polarity.
    Type: Application
    Filed: August 13, 2021
    Publication date: October 5, 2023
    Inventors: Liu YANG, Quan MA, Zhian HE, Shantinath GHONGADI
  • Publication number: 20230087448
    Abstract: An atomizing core and a cartridge are provided. The atomizing core includes an atomizing surface and a seepage surface opposite to the atomizing surface. The seepage surface is recessed downward to form an e-liquid slot. A heating wire is disposed on the atomizing surface. The atomizing core is made of a porous ceramic material. The atomizing core is formed with a plurality of capillary hole structures from the seepage surface to the atomizing surface after the atomizing core is fired. A part of the e-liquid slot protrudes upward to form a protruding column, and an inclined surface is disposed on a peripheral wall of the protruding column facing the e-liquid slot. The present disclosure effectively avoids a problem that the seepage of the e-liquid is insufficient in a case that the e-liquid is in a small amount.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 23, 2023
    Inventors: ZHIAN HE, CHONGWEI WANG
  • Publication number: 20230092179
    Abstract: A heating assembly includes a closure member, an atomizing core, and a sealing member sleeved on the atomizing core and clamped between the atomizing core and the closure member. The closure member includes a main body portion, e-liquid passages and an air passage defined on the main body portion and being independent of each other, an accommodation cavity disposed below the e-liquid passages and in communication with the e-liquid passages, and a part of an atomizing cavity disposed below the accommodation cavity. The atomizing core includes a seepage surface in communication with the e-liquid passages, and an atomizing surface in communication with the atomizing cavity. The sealing member includes a packing portion closely attached to an interior of the accommodation portion. The packing portion includes a packing wall and a covering portion. A cartridge is further provided.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 23, 2023
    Inventor: ZHIAN HE
  • Publication number: 20220333267
    Abstract: Methods and electroplating systems for controlling plating electrolyte concentration on an electrochemical plating apparatus for substrates are disclosed. A method involves: (a) providing an electroplating solution to an electroplating system; (b) electroplating the metal onto the substrate while the substrate is held in a cathode chamber of an electroplating cell of electroplating system; (c) supplying the make-up solution to the electroplating system via a make-up solution inlet; and (d) supplying the secondary electroplating solution to the electroplating system via a secondary electroplating solution inlet. The secondary electroplating solution includes some or all components of the electroplating solution. At least one component of the secondary electroplating solution has a concentration that significantly deviates from its target concentration.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 20, 2022
    Inventors: Zhian He, Shantinath Ghongadi, Quan Ma, Hyungjun Hur, Cian Sweeney, Quang Nguyen, Rezaul Karim, Jingbin Feng
  • Patent number: 11401623
    Abstract: Methods and electroplating systems for controlling plating electrolyte concentration on an electrochemical plating apparatus for substrates are disclosed. A method involves: (a) providing an electroplating solution to an electroplating system; (b) electroplating the metal onto the substrate while the substrate is held in a cathode chamber of an electroplating cell of electroplating system; (c) supplying the make-up solution to the electroplating system via a make-up solution inlet; and (d) supplying the secondary electroplating solution to the electroplating system via a secondary electroplating solution inlet. The secondary electroplating solution includes some or all components of the electroplating solution. At least one component of the secondary electroplating solution has a concentration that significantly deviates from its target concentration.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: August 2, 2022
    Assignee: Lam Research Corporation
    Inventors: Zhian He, Shantinath Ghongadi, Quan Ma, Hyungjun Hur, Cian Sweeney, Quang Nguyen, Rezaul Karim, Jingbin Feng
  • Publication number: 20220228287
    Abstract: An electrochemical deposition system includes: an electrochemical deposition chamber including an electrolyte for electrochemical deposition; a substrate holder configured to hold a substrate and including a first cathode that is electrically connected to the substrate; a first actuator configured to adjust a vertical position of the substrate holder within the electrochemical deposition chamber; an anode submerged in the electrolyte; a second cathode arranged between the first cathode and the anode; a first optical probe configured to measure a first reflectivity of the substrate at a first distance from a center of the substrate while the substrate is submerged within the electrolyte during the electrochemical deposition; and a controller configured to, based on the first reflectivity, selectively adjust at least one of power applied to the first cathode, power applied to the second cathode, power applied to the anode, and the vertical position of the substrate holder.
    Type: Application
    Filed: May 19, 2020
    Publication date: July 21, 2022
    Inventors: Andrew James PFAU, Shantinath GHONGADI, Zhian HE, Manish RANJAN
  • Patent number: 11225727
    Abstract: Various embodiments herein relate to methods and apparatus for electroplating metal onto substrates. In various cases, a reference electrode may be modified to promote improved electroplating results. The modifications may relate to one or more of the reference electrode's shape, position, relative conductivity compared to the electrolyte, or other design feature. In some particular examples the reference electrode may be dynamically changeable, for example having a changeable shape and/or position. In a particular example the reference electrode may be made of multiple segments. The techniques described herein may be combined as desired for individual applications.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: January 18, 2022
    Assignee: Lam Research Corporation
    Inventors: Zhian He, Ashwin Ramesh, Shantinath Ghongadi
  • Publication number: 20210366768
    Abstract: Various embodiments include methods and apparatuses to moisturize a substrate prior to an electrochemical deposition process. In one embodiment, a method to control substrate wettability includes placing a substrate in a pre-treatment chamber, controlling an environment of the pre-treatment chamber to moisturize a surface of the substrate; and placing the substrate into a plating cell. Other methods and systems are disclosed.
    Type: Application
    Filed: April 29, 2019
    Publication date: November 25, 2021
    Inventors: Zhian HE, Shantinath GHONGADI, Hyungjun HUR, Ludan HUANG, Jingbin FENG, Douglas HILL, Thomas BURKE, Manish RANJAN, Andrew James PFAU
  • Publication number: 20210321670
    Abstract: A closure body includes a closure member and a sealing member formed on closure member. The closure member includes a closure end, an accommodation end extending downward from closure end, an e-liquid passage running through closure end and extending to accommodation end, and an air passage separated from e-liquid passage. The air passage includes a connection air passage running through top of closure end, a longitudinal air passage longitudinally running through closure end and communicating with connection air passage, and an outer-side air passage extending from outer edge of longitudinal air passage to accommodation end. A notch is formed in middle of accommodation end. The sealing member includes a first sealing portion—formed at accommodation end, a second sealing portion extending from first sealing portion toward closure end, and a third sealing portion formed at periphery of top of closure end and integrated with second sealing portion.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Inventors: Xiaoshuo CHEN, Su LU, Quanyi LIU, Zhian HE, Chongwei WANG
  • Publication number: 20210130976
    Abstract: Methods and electroplating systems for controlling plating electrolyte concentration on an electrochemical plating apparatus for substrates are disclosed. A method involves: (a) providing an electroplating solution to an electroplating system; (b) electroplating the metal onto the substrate while the substrate is held in a cathode chamber of an electroplating cell of electroplating system; (c) supplying the make-up solution to the electroplating system via a make-up solution inlet; and (d) supplying the secondary electroplating solution to the electroplating system via a secondary electroplating solution inlet. The secondary electroplating solution includes some or all components of the electroplating solution. At least one component of the secondary electroplating solution has a concentration that significantly deviates from its target concentration.
    Type: Application
    Filed: January 11, 2021
    Publication date: May 6, 2021
    Applicant: Lam Research Corporation
    Inventors: Zhian He, Shantinath Ghongadi, Quan Ma, Hyungjun Hur, Cian Sweeney, Quang Nguyen, Rezaul Karim, Jingbin Feng
  • Patent number: 10927475
    Abstract: Methods and electroplating systems for controlling plating electrolyte concentration on an electrochemical plating apparatus for substrates are disclosed. A method involves: (a) providing an electroplating solution to an electroplating system; (b) electroplating the metal onto the substrate while the substrate is held in a cathode chamber of an electroplating cell of electroplating system; (c) supplying the make-up solution to the electroplating system via a make-up solution inlet; and (d) supplying the secondary electroplating solution to the electroplating system via a secondary electroplating solution inlet. The secondary electroplating solution includes some or all components of the electroplating solution. At least one component of the secondary electroplating solution has a concentration that significantly deviates from its target concentration.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: February 23, 2021
    Assignee: Lam Research Corporation
    Inventors: Zhian He, Shantinath Ghongadi, Quan Ma, Hyungjun Hur, Cian Sweeney, Quang Nguyen, Rezaul Karim, Jingbin Feng
  • Publication number: 20200277708
    Abstract: Various embodiments herein relate to methods and apparatus for electroplating metal onto substrates. In various cases, a reference electrode may be modified to promote improved electroplating results. The modifications may relate to one or more of the reference electrode's shape, position, relative conductivity compared to the electrolyte, or other design feature. In some particular examples the reference electrode may be dynamically changeable, for example having a changeable shape and/or position. In a particular example the reference electrode may be made of multiple segments. The techniques described herein may be combined as desired for individual applications.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Inventors: Zhian He, Ashwin Ramesh, Shantinath Ghongadi
  • Patent number: 10689774
    Abstract: Various embodiments herein relate to methods and apparatus for electroplating metal onto substrates. In various cases, a reference electrode may be modified to promote improved electroplating results. The modifications may relate to one or more of the reference electrode's shape, position, relative conductivity compared to the electrolyte, or other design feature. In some particular examples the reference electrode may be dynamically changeable, for example having a changeable shape and/or position. In a particular example the reference electrode may be made of multiple segments. The techniques described herein may be combined as desired for individual applications.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: June 23, 2020
    Assignee: Lam Research Corporation
    Inventors: Zhian He, Ashwin Ramesh, Shantinath Ghongadi
  • Patent number: 10358738
    Abstract: Various embodiments herein relate to methods and apparatus for electroplating metal on a substrate. In many cases, an electroplating process may be monitored to ensure that it is operating within a pre-defined processing window. This monitoring may involve application of a controlled potential between the substrate and a reference electrode after the electroplating process is substantially complete (e.g., after recessed features on the substrate are substantially filled). The current delivered to the substrate during application of the controlled potential is monitored, and a peak current is determined. This peak current, often referred to herein as the potential-controlled exit peak current, can be compared against an expected range to determine whether the electroplating process is operating as desired.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: July 23, 2019
    Assignee: Lam Research Corporation
    Inventors: Quan Ma, Shantinath Ghongadi, Zhian He, Bryan Pennington, Tariq Majid, Jonathan David Reid
  • Patent number: 10351968
    Abstract: Apparatus and methods for electroplating are described. Apparatus described herein include anode supports including positioning mechanisms that maintain a consistent distance between the surface of the wafer and the surface of a consumable anode during plating. Greater uniformity control is achieved. The consumable anode in one implementation has a plurality of through channels and at least one depression on its surface (e.g., a depression surrounding a channel) that is configured for registering with a protrusion on a component of an anode assembly, such as with a support plate. Fasteners may pass through the channels in the anode and attach it to a charge plate.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: July 16, 2019
    Assignee: Novellus Systems, Inc.
    Inventors: Jingbin Feng, R. Marshall Stowell, Shantinath Ghongadi, Zhian He, Frederick Dean Wilmot
  • Patent number: 10301739
    Abstract: An electroplating apparatus that promotes uniform electroplating on the substrates having thin seed layers includes a convex anisotropic high resistance ionic current source (AHRICS), such as an electrolyte-permeable resistive domed plate. The AHRICS is positioned in close proximity of the substrate, so that a distance from the central portion of the AHRICS to the substrate is smaller than the distance from the edge portion of the AHRICS to the substrate. The apparatus further includes a plating chamber configured to hold the electrolyte and an anode. The apparatus further includes a substrate holder configured to hold the substrate. In some embodiments, the apparatus further includes a secondary (thief) cathode configured to divert ionic current from the near-edge region of the substrate.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: May 28, 2019
    Assignee: Lam Research Corporation
    Inventor: Zhian He
  • Publication number: 20190145018
    Abstract: Various embodiments herein relate to methods and apparatus for electroplating metal onto substrates. In various cases, a reference electrode may be modified to promote improved electroplating results. The modifications may relate to one or more of the reference electrode's shape, position, relative conductivity compared to the electrolyte, or other design feature. In some particular examples the reference electrode may be dynamically changeable, for example having a changeable shape and/or position. In a particular example the reference electrode may be made of multiple segments. The techniques described herein may be combined as desired for individual applications.
    Type: Application
    Filed: January 10, 2019
    Publication date: May 16, 2019
    Inventors: Zhian He, Ashwin Ramesh, Shantinath Ghongadi
  • Publication number: 20190127872
    Abstract: Methods and electroplating systems for controlling plating electrolyte concentration on an electrochemical plating apparatus for substrates are disclosed. A method involves: (a) providing an electroplating solution to an electroplating system; (b) electroplating the metal onto the substrate while the substrate is held in a cathode chamber of an electroplating cell of electroplating system; (c) supplying the make-up solution to the electroplating system via a make-up solution inlet; and (d) supplying the secondary electroplating solution to the electroplating system via a secondary electroplating solution inlet. The secondary electroplating solution includes some or all components of the electroplating solution. At least one component of the secondary electroplating solution has a concentration that significantly deviates from its target concentration.
    Type: Application
    Filed: November 1, 2018
    Publication date: May 2, 2019
    Inventors: Zhian He, Shantinath Ghongadi, Quan Ma, Hyungjun Hur, Cian Sweeney, Quang Nguyen, Rezaul Karim, Jingbin Feng