Patents by Inventor Zhihang Zhang

Zhihang Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150155835
    Abstract: A method for implementing envelope tracking (ET), the method comprising switching from a receiver (Rx) radio frequency (RF) path to a supply sensing path during factory calibration, sensing the power amplifier (PA)'s supply voltage via the supply sensing path, comparing the PA's supply voltage to a corresponding reference supply voltage, determining the difference between the PA's supply voltage and the corresponding reference supply voltage, and updating one or more parameters used to perform a PA load pre-distortion during factory calibration, wherein the PA load pre-distortion is used to match the PA's supply voltage to the corresponding reference supply voltage.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 4, 2015
    Applicant: Futurewei Technologies, Inc.
    Inventors: Wael Al-Qaq, Hong Jiang, Zhihang Zhang
  • Publication number: 20140355456
    Abstract: IP2 calibration efficiency can be improved by passing the calibration signal through the transceiver's duplexer instead of inserting the calibration signal directly onto transceivers receive circuit. Passing the calibration signal through the duplexer may reduce IP2 calibration periods for transceivers having less-permeable duplexers, or duplexers that provide better than average separation between the RX and TX circuits. IP2 calibration inefficiencies can also be reduced by using a binary-like search when computing the in-phase and quadrature-phase path correction coefficients of the IP2 correction code.
    Type: Application
    Filed: June 3, 2013
    Publication date: December 4, 2014
    Inventors: Hong Jiang, Zhihang Zhang, Jian Liang
  • Publication number: 20140162732
    Abstract: A mobile device comprising an antenna, a receiver coupled to the antenna, and a transmitter coupled to the antenna, wherein the receiver, the transmitter, or both comprise a low noise amplifier comprising an adjustable gain and a variable impedance controller, and wherein the low noise amplifier is configured to sink current and to adjust a shunt resistance substantially simultaneously. Included is a method comprising receiving an electrical signal, substantially simultaneously adjusting an input impedance and a gain factor, amplifying the electrical signal, thereby producing an amplified signal, and outputting the amplified signal.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 12, 2014
    Applicant: Futurewei Technologies, Inc.
    Inventors: Ping Yin, Robert Grant Irvine, Chengfang Liao, Zhihang Zhang
  • Patent number: 8131224
    Abstract: Phase and gain of a transmit signal are measured at a transmitter by determining a first time delay having a first resolution at a measurement receiver between a reference signal from which the transmit signal is generated and a measured signal derived from the transmit signal by comparing amplitudes of the reference signal and the measured signal. A second time delay having a second resolution finer than the first resolution is determined at the measurement receiver between the reference signal and the measured signal based on the first time delay. The reference signal and the measured signal are time aligned at the measurement receiver based on the second time delay and the phase and gain of the transmit signal are estimated after the reference signal and the measured signal are time aligned.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: March 6, 2012
    Assignee: St-Ericsson SA
    Inventors: Wael A. Al-Qaq, Zhihang Zhang, Nikolaus Klemmer
  • Publication number: 20110151800
    Abstract: Phase and gain of a transmit signal are measured at a transmitter by determining a first time delay having a first resolution at a measurement receiver between a reference signal from which the transmit signal is generated and a measured signal derived from the transmit signal by comparing amplitudes of the reference signal and the measured signal. A second time delay having a second resolution finer than the first resolution is determined at the measurement receiver between the reference signal and the measured signal based on the first time delay. The reference signal and the measured signal are time aligned at the measurement receiver based on the second time delay and the phase and gain of the transmit signal are estimated after the reference signal and the measured signal are time aligned.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 23, 2011
    Inventors: Wael A. Al-Qaq, Zhihang Zhang, Nikolaus Klemmer
  • Patent number: 6122533
    Abstract: A planar filter for performing signal filtering at radio frequencies is provided. The planar filter can include asymmetrical resonators, wherein each resonator is asymmetrical about a longitudinal center axis through the resonator. In addition, the resonators can be grouped in coupled pairs such that the resonators in each coupled pair are asymmetrical about a longitudinal center axis between the paired resonators. In addition, a coupling structure is provided that includes both distributed coupling and tapped coupling to a resonator. Further, a bandstop filter device is provided that includes coupling between resonators in the filter.
    Type: Grant
    Filed: June 27, 1997
    Date of Patent: September 19, 2000
    Assignee: Spectral Solutions, Inc.
    Inventors: Zhihang Zhang, Attila Weiser, Jr., Jonathan Raymond Scupin, Linda D'Evelyn
  • Patent number: 6097263
    Abstract: The present invention provides an electronically tunable resonating apparatus which uses a tunable dielectric material which is biased by an electric field to alter the resonant frequency in a resonating cavity. The electrodes which apply the electric field are connected to a variable voltage source. The electrodes can therefore apply a plurality of electric field strengths and provide a range of resonant frequencies in the resonating apparatus. The resonating apparatus is particularly useful for microwave and millimeterwave electromagnetic energy.
    Type: Grant
    Filed: June 27, 1997
    Date of Patent: August 1, 2000
    Assignee: Robert M. Yandrofski
    Inventors: Carl H. Mueller, Zhihang Zhang, Gerhard A. Koepf
  • Patent number: 5990766
    Abstract: The tunable filters of the present invention incorporate tunable dielectric materials (e.g., bulk and thin film ferroelectric and paraelectric materials) in contact with segments of resonators that are at an RF voltage maximum to alter the pass band or stop band characteristic of an RF signal outputted by the filter. The biasing circuitry in contact with the tunable dielectric material can include components for inhibiting or retarding the coupling of RF energy to the biasing circuit.
    Type: Grant
    Filed: June 27, 1997
    Date of Patent: November 23, 1999
    Assignee: Superconducting Core Technologies, Inc.
    Inventors: Zhihang Zhang, Attila Weiser, Jr.